Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces
Mouffak Benchohra ; Lech Górniewicz ; Sotiris K. Ntouyas
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001), p. 261-282 / Harvested from The Polish Digital Mathematics Library

In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:271528
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1028,
     author = {Mouffak Benchohra and Lech G\'orniewicz and Sotiris K. Ntouyas},
     title = {Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {21},
     year = {2001},
     pages = {261-282},
     zbl = {1020.93004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1028}
}
Mouffak Benchohra; Lech Górniewicz; Sotiris K. Ntouyas. Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 261-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1028/

[000] [1] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Controllability of nonlinear integrodifferential systems in Banach space, J. Optim. Theory Appl. 84 (1995), 83-91. | Zbl 0821.93010

[001] [2] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Local null controllability of nonlinear functional differential systems in Banach space, J. Optim. Theory Appl. 75 (1996), 61-75. | Zbl 0848.93007

[002] [3] M. Benchohra and S.K. Ntouyas, Controllability for functional differential and integrodifferential inclusions in Banach spaces, submitted. | Zbl 1020.93002

[003] [4] N. Carmichael and M.D. Quinn, An approash to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses, Numerical Functional Analysis and Optimization 7 (1984-1985), 197-219. | Zbl 0563.93013

[004] [5] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York 1990.

[005] [6] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin - New York 1992.

[006] [7] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mat. PWN, Warsaw 1982.

[007] [8] H.O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 5 (1968), 72-105. | Zbl 0175.15101

[008] [9] H.O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Differential Equations 6 (1969), 50-70. | Zbl 0181.42801

[009] [10] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York 1985. | Zbl 0592.47034

[010] [11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht 1999. | Zbl 0937.55001

[011] [12] L. Górniewicz, P. Nistri and V. Obukhovskii, Differential inclusions on proximate retracts of Hilbert spaces, International J. Nonlin. Diff. Eqn. TMA, 3 (1997), 13-26.

[012] [13] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York 1994. | Zbl 0804.34001

[013] [14] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London 1997. | Zbl 0887.47001

[014] [15] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. | Zbl 0151.10703

[015] [16] T.W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Diss. Math. 92 (1972), 1-43.

[016] [17] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76. | Zbl 0314.47035

[017] [18] C.C. Travis and G.F. Webb, Second order differential equations in Banach spaces, Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York (1978), 331-361. | Zbl 0455.34044

[018] [19] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar. 32 (1978), 75-96. | Zbl 0388.34039

[019] [20] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin 1980.