In the paper, we deal with the relations among several generalized second-order directional derivatives. The results partially solve the problem which of the second-order optimality conditions is more useful.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1026, author = {Karel Pastor}, title = {On relations among the generalized second-order directional derivatives}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {21}, year = {2001}, pages = {235-247}, zbl = {1002.49021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1026} }
Karel Pastor. On relations among the generalized second-order directional derivatives. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1026/
[000] [1] J.M. Borwein, M. Fabián, On generic second-order Gâteaux differentiability, Nonlinear Anal. T.M.A 20 (1993), 1373-1382. | Zbl 0843.46027
[001] [2] J.M. Borwein and D. Noll, Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81. | Zbl 0802.46027
[002] [3] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), 483-490. | Zbl 0556.90074
[003] [4] F.H. Clarke, Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Ph.D. thesis, Univ. of Washington 1973.
[004] [5] F.H. Clarke, Optimization and nonsmooth analysis, J. Wiley, New York 1983. | Zbl 0582.49001
[005] [6] R. Cominetti, Equivalence between the classes of and twice locally Lipschitzian functions, Ph.D. thesis, Université Blaise Pascal 1989.
[006] [7] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789-809. | Zbl 0714.49020
[007] [8] W.L. Chan, L.R. Huang and K.F. Ng, On generalized second-order derivatives and Taylor expansions in nosmooth optimiyation, SIAM J. Control Optim. 32 (1994), 789-809.
[008] [9] P.G. Georgiev and N.P. Zlateva, Second-order subdifferentials of functions and optimality conditions, Set-Valued Analysis 4 (1996), 101-117. | Zbl 0864.49012
[009] [10] J.B. Hiriart-Urruty and C. Lemarchal, Convex Analysis nad Minimization Algorithms, Springer Verlag, Berlin 1993.
[010] [11] L.R. Huang and K.F. Ng, On some relations between Chaney's generalized second-order directional derivative and that of Ben-Tal and Zowe, SIAM J. Control Optim. 34 (1996), 1220-1234. | Zbl 0877.49019
[011] [12] V. Jeyakumar and X.Q. Yang, Approximate generalized Hessians and Taylor's expansions for continously Gâteaux differentiable functions, Nonlinear Anal. T.M.A 36 (1999), 353-368. | Zbl 0931.49011
[012] [13] G. Lebourg, Generic differentiability of Lipschitz functions, Trans. Amer. Math. Soc. 256 (1979), 125-144. | Zbl 0435.46031
[013] [14] Y. Maruyama, Second-order necessary conditions for nonlinear problems in Banach spases and their applications to optimal control problems, Math. Programming 41 (1988), 73-96.
[014] [15] P. Michel and J.P. Penot, Second-order moderate derivatives, Nonlinear Anal. T.M.A 22 (1994), 809-821. | Zbl 0810.49017
[015] [16] K. Pastor, Generalized second-order directional derivatives for locally Lipschitz functions, Preprint no. 17/2001 of Palacký Univerzity, Olomouc.
[016] [17] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-509. | Zbl 0145.15901
[017] [18] R.T. Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), 462-484. | Zbl 0698.90070
[018] [19] X.Q. Yang, On relations and applications of generalized second-order directional derivatives, Non. Anal. T.M.A 36 (1999), 595-614. | Zbl 0990.49016
[019] [20] X.Q. Yang, On second-order directional derivatives, Non. Anal. T.M.A 26, 55-66. | Zbl 0839.90138