Extremal solutions for nonlinear neumann problems
Antonella Fiacca ; Raffaella Servadei
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001), p. 191-206 / Harvested from The Polish Digital Mathematics Library

In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:271451
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1024,
     author = {Antonella Fiacca and Raffaella Servadei},
     title = {Extremal solutions for nonlinear neumann problems},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {21},
     year = {2001},
     pages = {191-206},
     zbl = {1013.35035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1024}
}
Antonella Fiacca; Raffaella Servadei. Extremal solutions for nonlinear neumann problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 191-206. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1024/

[000] [1] R. Adams, Sobolev Spaces, Academic Press, New York 1975.

[001] [2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972.

[002] [3] H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983.

[003] [4] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294. | Zbl 0249.47044

[004] [5] T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint. | Zbl 1122.35030

[005] [6] E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73. | Zbl 0704.35047

[006] [7] E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540. | Zbl 0732.35027

[007] [8] J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54. | Zbl 0331.35028

[008] [9] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971. | Zbl 0084.10402

[009] [10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983. | Zbl 0562.35001

[010] [11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975. | Zbl 0307.28001

[011] [12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997. | Zbl 0887.47001

[012] [13] N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149. | Zbl 0292.35034

[013] [14] J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107. | Zbl 0132.10502

[014] [15] J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165. | Zbl 0817.34016

[015] [16] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. | Zbl 0684.47029