We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1023, author = {Yuri E. Gliklikh and Andrei V. Obukhovski\u\i }, title = {Stochastic differential inclusions of Langevin type on Riemannian manifolds}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {21}, year = {2001}, pages = {173-190}, zbl = {1003.58027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1023} }
Yuri E. Gliklikh; Andrei V. Obukhovskiĭ. Stochastic differential inclusions of Langevin type on Riemannian manifolds. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 173-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1023/
[000] [1] P. Billingsley, Convergence of Probability Measures, New York et al., Wiley 1969. | Zbl 0944.60003
[001] [2] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, New York-London, Academic Press 1964. | Zbl 0132.16003
[002] [3] Yu.G. Borisovich and Yu.E. Gliklikh, On Lefschetz number for a certain class of set-valued maps, 7-th Summer Mathematical School., Kiev (1970), 283-294 (in Russian).
[003] [4] E.D. Conway, Stochastic equations with discontinuous drift, Trans. Amer. Math. Soc. 157 (1) (1971), 235-245. | Zbl 0276.60058
[004] [5] I.I. Gihman and A.V. Skorohod, Theory of Stochastic Processes 1, New York, Springer-Verlag 1979. | Zbl 0404.60061
[005] [6] I.I. Gihman and A.V. Skorohod, Theory of Stochastic Processes 3, New York, Springer-Verlag 1979. | Zbl 0404.60061
[006] [7] Yu.E. Gliklikh, Fixed points of multivalued mappings with nonconvex images and the rotation of multivalued vector fields, Sbornik Trudov Aspirantov Matematicheskogo Fakul'teta, Voronezh University (1972), 30-38 (in Russian).
[007] [8] Yu.E. Gliklikh and I.V. Fedorenko, On the geometrization of a certain class of mechanical systems with random perturbations of the force, Voronezh University, Deposited in VINITI, October 21, 1980, N 4481 (in Russian).
[008] [9] Yu.E. Gliklikh and I.V. Fedorenko, Equations of geometric mechanics with random force fields, Priblizhennye metody issledovaniya differentsial'nykh uravneni i ikh prilozheniya, Kubyshev 1981, 64-72 (in Russian).
[009] [10] Yu.E. Gliklikh, Riemannian parallel translation in non-linear mechanics, Lect. Notes Math. 1108 (1984), 128-151.
[010] [11] Yu.E. Gliklikh, Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, Dordrecht, Kluwer 1996, xvi+189. | Zbl 0865.60042
[011] [12] Yu.E. Gliklikh, Global Analysis in Mathematical Physics, Geometric and Stochastic Methods, New York, Springer-Verlag 1997, xv+213.
[012] [13] A.N. Kolmogorov and S.V. Fomin, Elements of theory of functions and functional analysis, Moscow, Nauka 1968. | Zbl 0235.46001
[013] [14] W. Kryszewski, Homotopy properties of set-valued mappings, Toruń, Toruń University 1997, 243. | Zbl 1250.54022
[014] [15] J. Motyl, On the Solution of Stochastic Differential Inclusion, J. Math. Anal. and Appl. 192 (1995), 117-132. | Zbl 0826.60053
[015] [16] A.D. Myshkis, Generalization of the theorem on the stationary point of the dynamical system inside a closed trajectory, Mat. Sbornik 34 (3) (1954), 525-540. | Zbl 0056.08901
[016] [17] K.R. Parthasarathy, Introduction to Probability and Measure, New York, Springer-Verlag 1978. | Zbl 0395.28001
[017] [18] A.N. Shiryaev, Probability, Moscow, Nauka 1989.
[018] [19] Y. Yosida, Functional Analysis, Berlin et. al., Springer-Verlag 1965.