Nonlinear multivalued boundary value problems
Ralf Bader ; Nikolaos S. Papageorgiou
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001), p. 127-148 / Harvested from The Polish Digital Mathematics Library

In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when domAN and domA=N, with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:271491
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020,
     author = {Ralf Bader and Nikolaos S. Papageorgiou},
     title = {Nonlinear multivalued boundary value problems},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {21},
     year = {2001},
     pages = {127-148},
     zbl = {0999.34010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020}
}
Ralf Bader; Nikolaos S. Papageorgiou. Nonlinear multivalued boundary value problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 127-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020/

[000] [1] R. Bader, A topological fixed point theory for evolution inclusions, submitted. | Zbl 0985.34053

[001] [2] R. Bader and N.S. Papageorgiou, Quasilinear vector differential equations with maximal monotone terms and nonlinear boundary conditions, Annales Polonici Math. LXIII (2000), 69-93. | Zbl 0991.34013

[002] [3] L. Boccardo, P. Drabek, D. Giachetti and M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083-1103. | Zbl 0623.34031

[003] [4] H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198 (1996), 35-48. | Zbl 0855.34021

[004] [5] M. Del Pino, M. Elgueta and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u'|p-2u')'+f(t,u)=0, u(0) = u(T) = 0, J. Diff. Eqns 80 (1989), 1-13. | Zbl 0708.34019

[005] [6] M. Del Pino, R. Manasevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e., Nonlinear Anal. 18 (1992), 79-92. | Zbl 0761.34032

[006] [7] L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y(t),y'(t)), Annales Polonici Math. 54 (1991), 195-226. | Zbl 0731.34078

[007] [8] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207-227. | Zbl 0824.34026

[008] [9] M. Frigon, Theoremes d'existence des solutions d'inclusions differentielles, NATO ASI Series, section C, vol. 472, Kluwer, Dordrecht, The Netherlands (1995), 51-87.

[009] [10] Z. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integral Eqns 6 (1993), 705-719. | Zbl 0784.34018

[010] [11] N. Halidias and N.S. Papageorgiou, Existence and relaxation results for nonlinear second order multivalued boundary value problems in N, J. Diff. Eqns 147 (1998), 123-154. | Zbl 0912.34020

[011] [12] P. Hartman, Ordinary Differential Equations, J. Wiley, New York 1964.

[012] [13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. | Zbl 0887.47001

[013] [14] D. Kandilakis and N.S. Papageorgiou, Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125. | Zbl 0859.34011

[014] [15] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Diff. Eqns 145 (1998), 367-393. | Zbl 0910.34051

[015] [16] M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces , Arch. Rational Mech. Anal. 45 (1972), 294-320. | Zbl 0236.46033

[016] [17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. | Zbl 0684.47029