In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when and , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020, author = {Ralf Bader and Nikolaos S. Papageorgiou}, title = {Nonlinear multivalued boundary value problems}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {21}, year = {2001}, pages = {127-148}, zbl = {0999.34010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020} }
Ralf Bader; Nikolaos S. Papageorgiou. Nonlinear multivalued boundary value problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 127-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1020/
[000] [1] R. Bader, A topological fixed point theory for evolution inclusions, submitted. | Zbl 0985.34053
[001] [2] R. Bader and N.S. Papageorgiou, Quasilinear vector differential equations with maximal monotone terms and nonlinear boundary conditions, Annales Polonici Math. LXIII (2000), 69-93. | Zbl 0991.34013
[002] [3] L. Boccardo, P. Drabek, D. Giachetti and M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083-1103. | Zbl 0623.34031
[003] [4] H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198 (1996), 35-48. | Zbl 0855.34021
[004] [5] M. Del Pino, M. Elgueta and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for , u(0) = u(T) = 0, J. Diff. Eqns 80 (1989), 1-13. | Zbl 0708.34019
[005] [6] M. Del Pino, R. Manasevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e., Nonlinear Anal. 18 (1992), 79-92. | Zbl 0761.34032
[006] [7] L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y(t),y'(t)), Annales Polonici Math. 54 (1991), 195-226. | Zbl 0731.34078
[007] [8] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207-227. | Zbl 0824.34026
[008] [9] M. Frigon, Theoremes d'existence des solutions d'inclusions differentielles, NATO ASI Series, section C, vol. 472, Kluwer, Dordrecht, The Netherlands (1995), 51-87.
[009] [10] Z. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integral Eqns 6 (1993), 705-719. | Zbl 0784.34018
[010] [11] N. Halidias and N.S. Papageorgiou, Existence and relaxation results for nonlinear second order multivalued boundary value problems in , J. Diff. Eqns 147 (1998), 123-154. | Zbl 0912.34020
[011] [12] P. Hartman, Ordinary Differential Equations, J. Wiley, New York 1964.
[012] [13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. | Zbl 0887.47001
[013] [14] D. Kandilakis and N.S. Papageorgiou, Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125. | Zbl 0859.34011
[014] [15] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Diff. Eqns 145 (1998), 367-393. | Zbl 0910.34051
[015] [16] M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces , Arch. Rational Mech. Anal. 45 (1972), 294-320. | Zbl 0236.46033
[016] [17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. | Zbl 0684.47029