Ball intersection model for Fejér zones of convex closed sets
Dieter Schott
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001), p. 51-79 / Harvested from The Polish Digital Mathematics Library

Strongly Fejér monotone mappings are widely used to solve convex problems by corresponding iterative methods. Here the maximal of such mappings with respect to set inclusion of the images are investigated. These mappings supply restriction zones for the successors of Fejér monotone iterative methods. The basic tool is the representation of the images by intersection of certain balls.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:271553
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1017,
     author = {Dieter Schott},
     title = {Ball intersection model for Fej\'er zones of convex closed sets},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {21},
     year = {2001},
     pages = {51-79},
     zbl = {0989.65060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1017}
}
Dieter Schott. Ball intersection model for Fejér zones of convex closed sets. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 21 (2001) pp. 51-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1017/

[000] [1] I.I. Eremin and V.D. Mazurov, Nestacionarnye Processy Programmirovanija, Nauka, Moskva 1979.

[001] [2] J.-P. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag, Berlin et. al. 1993.

[002] [3] J.T. Marti, Konvexe Analysis, Birkhäuser Verlag, Basel 1977.

[003] [4] R.T. Rockafellar, Convex Analysis, Princeton, New Jersey 1972. | Zbl 0224.49003

[004] [5] D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357. | Zbl 0853.65055

[005] [6] D. Schott, Basic properties of Fejér monotone sequences, Rostock. Math. Kolloq. 49 (1995), 57-74. | Zbl 0855.65056

[006] [7] D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84. | Zbl 0905.65068

[007] [8] D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726. | Zbl 0882.65043

[008] [9] D. Schott, Weak convergence of Fejér monotone iterative methods, Rostock. Math. Kolloq. 51 (1997), 83-96. | Zbl 0890.65055

[009] [10] D. Schott, Strongly Fejér monotone mappings, Part III: Interval union model for maximal mappings, preprint.

[010] [11] H. Stark, (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.