On weak sharp minima for a special class of nonsmooth functions
Marcin Studniarski
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000), p. 195-207 / Harvested from The Polish Digital Mathematics Library

We present a characterization of weak sharp local minimizers of order one for a function f: ℝⁿ → ℝ defined by f(x):=maxfi(x)|i=1,...,p, where the functions fi are strictly differentiable. It is given in terms of the gradients of fi and the Mordukhovich normal cone to a given set on which f is constant. Then we apply this result to a smooth nonlinear programming problem with constraints.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:271556
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1012,
     author = {Marcin Studniarski},
     title = {On weak sharp minima for a special class of nonsmooth functions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {20},
     year = {2000},
     pages = {195-207},
     zbl = {1012.49014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1012}
}
Marcin Studniarski. On weak sharp minima for a special class of nonsmooth functions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000) pp. 195-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1012/

[000] [1] J.F. Bonnans and A. Ioffe, Second-order sufficiency and quadratic growth for nonisolated minima, Math. Oper. Res. 20 (1995), 801-817. | Zbl 0846.90095

[001] [2] J.M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), 9-52. | Zbl 0557.49020

[002] [3] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim. 31 (1993), 1340-1359. | Zbl 0791.90040

[003] [4] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York 1998. | Zbl 1047.49500

[004] [5] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex Analysis without Linearity, Kluwer Academic Publishers, Dordrecht 1997. | Zbl 0887.49001

[005] [6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin 1998. | Zbl 0888.49001

[006] [7] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim. 24 (1986), 1044-1049. | Zbl 0604.49017

[007] [8] M. Studniarski, Second-order necessary conditions for optimality in nonsmooth nonlinear programming, J. Math. Anal. Appl. 154 (1991), 303-317. | Zbl 0725.90085

[008] [9] M. Studniarski, Characterizations of strict local minima for some nonlinear programming problems, Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). | Zbl 0914.90243

[009] [10] M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, System Modelling and Optimization (Detroit, MI, 1997), 207-215, Chapman & Hall/CRC Res. Notes Math., 396, 1999. | Zbl 0955.90130

[010] [11] M. Studniarski and M. Studniarska, New characterizations of weak sharp and strict local minimizers in nonlinear programming, Preprint 1999/15, Faculty of Mathematics, University of ódź.

[011] [12] M. Studniarski and D.E. Ward, Weak sharp minima: characterizations and sufficient conditions, SIAM J. Control Optim. 38 (1999), 219-236. | Zbl 0946.49011