Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1010, author = {Dariusz Zagrodny}, title = {Equilibrium of maximal monotone operator in a given set}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {20}, year = {2000}, pages = {159-169}, zbl = {0983.49012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1010} }
Dariusz Zagrodny. Equilibrium of maximal monotone operator in a given set. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000) pp. 159-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1010/
[000] [1] A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301. | Zbl 1010.90071
[001] [2] L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301. | Zbl 0815.49020
[002] [3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989. | Zbl 0658.46035
[003] [4] M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152.
[004] [5] M. Przeworski, Lokalizacja Punktów Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999.
[005] [6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998. | Zbl 0888.49001
[006] [7] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984.
[007] [8] S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389. | Zbl 0836.49009
[008] [9] S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337. | Zbl 0807.46002
[009] [10] S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998.
[010] [11] E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989.
[011] [12] D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314. | Zbl 0867.49015