In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003, author = {Leszek Gasi\'nski}, title = {An optimal shape design problem for a hyperbolic hemivariational inequality}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {20}, year = {2000}, pages = {41-50}, zbl = {0964.49008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003} }
Leszek Gasiński. An optimal shape design problem for a hyperbolic hemivariational inequality. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000) pp. 41-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003/
[000] [1] W. Bian, Existence Results for Second Order Nonlinear Evolution Inclusions, Indian J. Pure Appl. Math. 29 (11) (1998), 1177-1193. | Zbl 0922.34051
[001] [2] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. of Funct. Anal. 11 (1972), 251-294. | Zbl 0249.47044
[002] [3] K.C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl 0487.49027
[003] [4] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York 1983. | Zbl 0582.49001
[004] [5] Z. Denkowski and S. Migórski, Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequality, J. Global. Opt. 12 (1998), 37-59. | Zbl 0902.49023
[005] [6] L. Gasiński, Optimal Shape Design Problems for a Class of Systems Described by Parabolic Hemivariational Inequality, J. Global. Opt. 12 (1998), 299-317. | Zbl 0905.49009
[006] [7] L. Gasiński, Hyperbolic Hemivariational Inequalities, in preparation. | Zbl 1022.49014
[007] [8] W.B. Liu and J.E. Rubio, Optimal Shape Design for Systems Governed by Variational Inequalities, Part 1: Existence Theory for the Elliptic Case, Part 2: Existence Theory for Evolution Case, J. Optim. Th. Appl. 69 (1991), 351-371, 373-396. | Zbl 0725.49014
[008] [9] A.M. Micheletti, Metrica per famiglie di domini limitati e proprieta generiche degli autovalori, Annali della Scuola Normale Superiore di Pisa 28 (1972), 683-693. | Zbl 0255.35028
[009] [10] J.J. Moreau, Le Notions de Sur-potential et les Liaisons Unilatérales en Élastostatique, C.R. Acad. Sc. Paris 267A (1968), 954-957. | Zbl 0172.49802
[010] [11] J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics, Birkhäuser, Basel 1988. | Zbl 0646.00014
[011] [12] F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint no. 76015, University of Paris 6 (1976), 725-734.
[012] [13] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Dekker, New York 1995. | Zbl 0968.49008
[013] [14] P.D. Panagiotopoulos, Nonconvex Superpotentials in the Sense of F.H. Clarke and Applications, Mech. Res. Comm. 8 (1981), 335-340. | Zbl 0497.73020
[014] [15] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36. | Zbl 0574.73015
[015] [16] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Basel 1985. | Zbl 0579.73014
[016] [17] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1984. | Zbl 0534.49001
[017] [18] J. Sokołowski and J.P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag 1992. | Zbl 0761.73003