An optimal shape design problem for a hyperbolic hemivariational inequality
Leszek Gasiński
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000), p. 41-50 / Harvested from The Polish Digital Mathematics Library

In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:271495
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003,
     author = {Leszek Gasi\'nski},
     title = {An optimal shape design problem for a hyperbolic hemivariational inequality},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {20},
     year = {2000},
     pages = {41-50},
     zbl = {0964.49008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003}
}
Leszek Gasiński. An optimal shape design problem for a hyperbolic hemivariational inequality. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 20 (2000) pp. 41-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1003/

[000] [1] W. Bian, Existence Results for Second Order Nonlinear Evolution Inclusions, Indian J. Pure Appl. Math. 29 (11) (1998), 1177-1193. | Zbl 0922.34051

[001] [2] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. of Funct. Anal. 11 (1972), 251-294. | Zbl 0249.47044

[002] [3] K.C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl 0487.49027

[003] [4] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York 1983. | Zbl 0582.49001

[004] [5] Z. Denkowski and S. Migórski, Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequality, J. Global. Opt. 12 (1998), 37-59. | Zbl 0902.49023

[005] [6] L. Gasiński, Optimal Shape Design Problems for a Class of Systems Described by Parabolic Hemivariational Inequality, J. Global. Opt. 12 (1998), 299-317. | Zbl 0905.49009

[006] [7] L. Gasiński, Hyperbolic Hemivariational Inequalities, in preparation. | Zbl 1022.49014

[007] [8] W.B. Liu and J.E. Rubio, Optimal Shape Design for Systems Governed by Variational Inequalities, Part 1: Existence Theory for the Elliptic Case, Part 2: Existence Theory for Evolution Case, J. Optim. Th. Appl. 69 (1991), 351-371, 373-396. | Zbl 0725.49014

[008] [9] A.M. Micheletti, Metrica per famiglie di domini limitati e proprieta generiche degli autovalori, Annali della Scuola Normale Superiore di Pisa 28 (1972), 683-693. | Zbl 0255.35028

[009] [10] J.J. Moreau, Le Notions de Sur-potential et les Liaisons Unilatérales en Élastostatique, C.R. Acad. Sc. Paris 267A (1968), 954-957. | Zbl 0172.49802

[010] [11] J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics, Birkhäuser, Basel 1988. | Zbl 0646.00014

[011] [12] F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint no. 76015, University of Paris 6 (1976), 725-734.

[012] [13] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Dekker, New York 1995. | Zbl 0968.49008

[013] [14] P.D. Panagiotopoulos, Nonconvex Superpotentials in the Sense of F.H. Clarke and Applications, Mech. Res. Comm. 8 (1981), 335-340. | Zbl 0497.73020

[014] [15] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36. | Zbl 0574.73015

[015] [16] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Basel 1985. | Zbl 0579.73014

[016] [17] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1984. | Zbl 0534.49001

[017] [18] J. Sokołowski and J.P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag 1992. | Zbl 0761.73003