The notion of pseudo-BCH-algebras is introduced, and some of their properties are investigated. Conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra are given. Ideals and minimal elements in pseudo-BCH-algebras are considered.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1233, author = {Andrzej Walendziak}, title = {Pseudo-BCH-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {5-19}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1233} }
Andrzej Walendziak. Pseudo-BCH-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 5-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1233/
[000] [1] R.A. Borzooei, A.B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo-BE-algebras, Discuss. Math. General Algebra and Appl. 33 (2013) 95-97. doi: 10.7151/dmgaa.1193 | Zbl 1305.06020
[001] [2] M.A. Chaudhry, On BCH-algebras, Math. Japonica 36 (1991) 665-676. | Zbl 0733.06008
[002] [3] W.A. Dudek and Y.B. Jun, Pseudo-BCI-algebras, East Asian Math. J. 24 (2008) 187-190. | Zbl 1149.06010
[003] [4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90. | Zbl 1294.06021
[004] [5] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.
[005] [6] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999) 961-968. | Zbl 0985.06007
[006] [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February, 2000) 90-92.
[007] [8] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001) 97-114. | Zbl 0986.06018
[008] [9] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983) 313-320. | Zbl 0579.03047
[009] [10] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19-22. | Zbl 0156.24812
[010] [11] K. Iséki, An algebra related with a propositional culculus, Proc. Japan Academy 42 (1966) 26-29. | Zbl 0207.29304
[011] [12] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo-BCI-algebras, Matem. Vesnik 58 (2006) 39-46. | Zbl 1119.03068
[012] [13] Y.B. Jun, H.S. Kim and J. Neggers, Pseudo-d-algebras, Information Sciences 179 (2009) 1751-1759. doi: 10.1016/j.ins.2009.01.021 | Zbl 1179.06008
[013] [14] Y.H. Kim and K.S. So, On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012) 7-13. doi: 10.4134/CKMS.2012.27.1.007 | Zbl 1244.06008
[014] [15] K.J. Lee and Ch.H. Park, Some ideals of pseudo-BCI-algebras, J. Appl. & Informatics 27 (2009) 217-231.
[015] [16] J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26.
[016] [17] A.B. Saeid and A. Namdar, On n-fold ideals in BCH-algebras and computation algorithms, World Applied Sciences Journal 7 (2009) 64-69.
[017] [18] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211-213. | Zbl 0518.06014