In the present paper, it is introduced the definition of a reverse derivation on a Γ-ring M. It is shown that a mapping derivation on a semiprime Γ-ring M is central if and only if it is reverse derivation. Also it is shown that M is commutative if for all a,b ∈ I (I is an ideal of M) satisfying d(a) ∈ Z(M), and d(a ∘ b) = 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1232, author = {Neshtiman Nooraldeen Suliman}, title = {Some results of reverse derivation on prime and semiprime $\Gamma$-rings}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {53-58}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1232} }
Neshtiman Nooraldeen Suliman. Some results of reverse derivation on prime and semiprime Γ-rings. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 53-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1232/
[000] [1] W.E. Barness, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (3) (1966) 411-422.
[001] [2] M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequation Math. 38 (1989) 178-185. doi: 10.1007/BF01840003 | Zbl 0691.16041
[002] [3] Md. F. Hoque and A.C. Paul, On centralizers of semiprime gamma rings, Intr. Math. Forum 6 (13) (2011) 627-638. | Zbl 1229.16044
[003] [4] S. Kyuno, On prime gamma rings, Pacific J. Math. 75 (1978) 185-190. | Zbl 0381.16022
[004] [5] L. Luh, On the theory of simple Gamma rings, Michigan Math. J. 16 (1969) 576-584. doi: 10.1307/mmj/1029000167
[005] [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89. | Zbl 0135.02701
[006] [7] M. Sapanci and A. Nakajima, A note on gamma rings, Turkish J. Math. 20 (1996) 463-465.
[007] [8] M. Soytürk, The commutativity in prime gamma rings with Derivation, Turkish J. Math. 18 (1994) 149-155. | Zbl 0860.16039