A non-deterministic hypersubstitution maps operation symbols to sets of terms of the corresponding arity. A non-deterministic hypersubstitution of type τ is said to be linear if it maps any operation symbol to a set of linear terms of the corresponding arity. We show that the extension of non-deterministic linear hypersubstitutions of type τ map sets of linear terms to sets of linear terms. As a consequence, the collection of all non-deterministic linear hypersubstitutions forms a monoid. Non-deterministic linear hypersubstitutions can be applied to identities and to algebras of type τ.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1230, author = {Nareupanat Lekkoksung and Prakit Jampachon}, title = {Non-Deterministic Linear Hypersubstitutions}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {97-103}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1230} }
Nareupanat Lekkoksung; Prakit Jampachon. Non-Deterministic Linear Hypersubstitutions. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 97-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1230/
[000] [1] T. Changphas, K. Denecke and B. Pibaljommee, Linear terms and linear hypersubstitutions, preprint (2014), Khon Kaen.
[001] [2] M. Couceiro and E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification and composition, Algebra Universalis 67 (2012) 273-297. doi: 10.1007/s00012-012-0184-1 | Zbl 1257.08002
[002] [3] K. Denecke, P. Glubudom and J. Koppitz, Power Clones and Non-Deterministic Hypersubstitutions, Asian-European J. Math. 1 (2) (2008) 177-188. doi: 10.1142/s1793557108000175 | Zbl 1221.08002
[003] [4] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach science Publishers (2000). doi: 10.5860/choice.39-2238 | Zbl 0960.08001
[004] [5] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman & Hall/CRC, Boca Raton, 2002).
[005] [6] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras, advances in Mathematics (Springer Science + Business Media, 2006). | Zbl 1094.08001