We present a new criterion for the existence of Hilbert-symbol equivalence of two number fields. In principle, we show that the system of local conditions for this equivalence may be expressed in terms of Clifford invariants in place of Hilbert-symbols, shifting the focus from Brauer groups to Brauer-Wall groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1229, author = {Przemys\l aw Koprowski}, title = {Graded Hilbert-symbol equivalence of number fields}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {105-113}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1229} }
Przemysław Koprowski. Graded Hilbert-symbol equivalence of number fields. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 105-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1229/
[000] [1] P.E. Conner, R. Perlis and K. Szymiczek, Wild sets and 2-ranks of class groups, Acta Arith. 79 (1) (1997) 83-91. | Zbl 0880.11039
[001] [2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1) (1991) 27-46. | Zbl 0733.11012
[002] [3] A. Czogała, Higher degree tame Hilbert-symbol equivalence of number fields, Abh. Math. Sem. Univ. Hamburg 69 (1999) 175-185. doi: 10.1007/BF02940871 | Zbl 0968.11038
[003] [4] A. Czogała, Równoważność Hilberta ciał globalnych, volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001.
[004] [5] A. Czogała and B. Rothkegel, Wild primes of a self-equivalence of a number field, Acta Arith. 166 (4) (2014) 335-348. doi: 10.4064/aa166-4-2 | Zbl 1319.11077
[005] [6] A. Czogała and A. Sładek, Higher degree Hilbert-symbol equivalence of number fields, Tatra Mt. Math. Publ. 11 (1997) 77-88. Number theory (Liptovský Ján, 1995). | Zbl 0978.11058
[006] [7] A. Czogała and A. Sładek, Higher degree Hilbert symbol equivalence of algebraic number fields, II, J. Number Theory 72 (2) (1998) 363-376. doi: 10.1006/jnth.1998.2266
[007] [8] D.K. Harrison, Witt Rings, Lecture notes, Department of Mathematics, University of Kentucky (Lexington, Kentucky, 1970).
[008] [9] P. Koprowski, Graded quaternion symbol equivalence of function fields, Czechoslovak Math. J. 57 (132) (4) (2007), 1311-1319. doi: 10.1007/s10587-007-0125-x | Zbl 1190.11029
[009] [10] T.Y. Lam, Introduction to Quadratic Forms Over Fields, volume 67 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2005. | Zbl 1068.11023
[010] [11] T.C. Palfrey, Density Theorems for Reciprocity Equivalences, ProQuest LLC, Ann Arbor, MI, 1989. Thesis (Ph.D.)-Louisiana State University and Agricultural & Mechanical College. | Zbl 0923.11066
[011] [12] R. Perlis, K. Szymiczek, P.E. Conner and R. Litherland, Matching Witts with global fields, in: Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365-387. Amer. Math. Soc., Providence, RI, 1994. | Zbl 0807.11024
[012] [13] A. Sładek, Higher degree Harrison equivalence and Milnor K-functor, in: Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997), 6 (1998) 183-190.
[013] [14] M. Somodi, On the size of the wild set, Canad. J. Math. 57 (1) (2005) 180-203. doi: 10.4153/CJM-2005-008-6 | Zbl 1073.11026
[014] [15] M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (4) (2006) 327-334. doi: 10.4064/aa121-4-3
[015] [16] K. Szymiczek, Matching Witts locally and globally, Math. Slovaca 41 (3) (1991) 315-330. | Zbl 0766.11023
[016] [17] K. Szymiczek, Witt equivalence of global fields, Comm. Algebra 19 (4) (1991) 1125-1149. | Zbl 0724.11020
[017] [18] K. Szymiczek, Quadratic forms, in: Handbook of algebra, Vol. 6, pages 35-80 (Elsevier/North-Holland, Amsterdam, 2009). doi: 10.1016/S1570-7954(08)00202-7 | Zbl 1213.11092