The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1227, author = {Grzegorz Dymek}, title = {On a period of elements of pseudo-BCI-algebras}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {35}, year = {2015}, pages = {21-31}, zbl = {06472904}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1227} }
Grzegorz Dymek. On a period of elements of pseudo-BCI-algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 35 (2015) pp. 21-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1227/
[000] [1] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187-190. | Zbl 1149.06010
[001] [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90. | Zbl 1294.06021
[002] [3] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167-187. | Zbl 1319.06014
[003] [4] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.
[004] [5] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, Bull. Sect. Logic 42 (2013) 33-42.
[005] [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97-114. | Zbl 0986.06018
[006] [7] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92.
[007] [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961-968. | Zbl 0985.06007
[008] [9] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008).
[009] [10] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29. doi: 10.3792/pja/1195522171 | Zbl 0207.29304
[010] [11] Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39-46. | Zbl 1119.03068