The Clifford semiring congruences on an additive regular semiring
A.K. Bhuniya
Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014), p. 143-153 / Harvested from The Polish Digital Mathematics Library

A congruence ρ on a semiring S is called a (generalized)Clifford semiring congruence if S/ρ is a (generalized)Clifford semiring. Here we characterize the (generalized)Clifford congruences on a semiring whose additive reduct is a regular semigroup. Also we give an explicit description for the least (generalized)Clifford congruence on such semirings.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270704
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1219,
     author = {A.K. Bhuniya},
     title = {The Clifford semiring congruences on an additive regular semiring},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {34},
     year = {2014},
     pages = {143-153},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1219}
}
A.K. Bhuniya. The Clifford semiring congruences on an additive regular semiring. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 143-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1219/

[000] [1] H.J. Bandelt and M. Petrich, Subdirect products of rings and distributive lattices, Proc. Edin. Math. Soc. 25 (1982) 155-171. doi: 10.1017/S0013091500016643 | Zbl 0486.16026

[001] [2] R. Feigenbaum, Kernels of regular semigroup homomorphisms. Doctoral Dissertation (University of South Carolina, 1975). | Zbl 0343.20033

[002] [3] R. Feigenbaum, Regular semigroup congruences, Semigroup Forum 17 (1979) 373-377. doi: 10.1007/BF02194336 | Zbl 0433.20043

[003] [4] S. Ghosh, A characterisation of semirings which are subdirect products of a distributive lattice and a ring, Semigroup Forum 59 (1999) 106-120. doi: 10.1007/PL00005999 | Zbl 0948.16036

[004] [5] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).

[005] [6] M.P. Grillet, Semirings with a completely simple additive Semigroup, J. Austral. Math. Soc. 20 (A) (1975) 257-267. doi: 10.1017/S1446788700020607 | Zbl 0316.16039

[006] [7] J.M. Howie, Fundamentals of semigroup theory (Clarendon, Oxford, 1995). Reprint in 2003. | Zbl 0835.20077

[007] [8] D.R. LaTorre, The least semilattice of groups congruence on a regular semigroup, Semigroup Forum 27 (1983) 319-329. doi: 10.1007/BF02572745 | Zbl 0524.20039

[008] [9] S.K. Maity, Congruences on additive inverse semirings, Southeast Asian Bull. Math. 30 (3) (2006) 473-484. | Zbl 1122.16040

[009] [10] J.E. Mills, Certain congruences on orthodox semigroups, Pacific J. Math. 64 (1976) 217-226. doi: 10.2140/pjm.1976.64.217 | Zbl 0358.20075

[010] [11] F. Pastijn and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (2) (1986) 607-633. doi: 10.1090/S0002-9947-1986-0833699-3 | Zbl 0599.20095

[011] [12] M.K. Sen and A.K. Bhuniya, On the left inversive semiring congruences on additive regular semirings, Journal of the Korea Society of Mathematical Education 12 (2005) 253-274. | Zbl 1139.16306

[012] [13] M.K. Sen, S. Ghosh and P. Mukhopadhyay, Congruences on inverse semirings, in: Algebras and Combinatorics (Hong Kong, 1997) (pp. 391-400). Springer, Singapore, 1999. | Zbl 0980.16041

[013] [14] M.K. Sen, S.K. Maity and K.P. Shum, Clifford semirings and generalized Clifford semirings. Taiwanese Journal of Mathematics 9 (3) (2005), 433-444. | Zbl 1091.16028