Let A and B be M-matrices satisfying A ≤ B and J = [A,B] be the set of all matrices C such that A ≤ C ≤ B, where the order is component wise. It is rather well known that if A is an M-matrix and B is an invertible M-matrix and A ≤ B, then aA + bB is an invertible M-matrix for all a,b > 0. In this article, we present an elementary proof of a stronger version of this result and study corresponding results for certain other classes as well.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216, author = {M. Rajesh Kannan and K.C. Sivakumar}, title = {Intervals of certain classes of Z-matrices}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {34}, year = {2014}, pages = {85-93}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216} }
M. Rajesh Kannan; K.C. Sivakumar. Intervals of certain classes of Z-matrices. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216/
[000] [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (SIAM, Philadelphia, 1994). | Zbl 0815.15016
[001] [2] R.W. Cottle, A field guide to the matrix classes found in the literature of the linear complementarity problem, J. Global Optim. 46 (2010) 571-580. doi: 10.1007/s10898-009-9441-z | Zbl 1193.90203
[002] [3] L. Hogben, Discrete Mathematics and Its Applications: Handbook of Linear Algebra (CRC Press, 2006).
[003] [4] G.A. Johnson, A generalization of N-matrices, Linear Algebra Appl. 48 (1982) 201-217. doi: 10.1016/0024-3795(82)90108-2
[004] [5] Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29 (1966) 185-196. doi: 10.1007/BF03016047
[005] [6] A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications (Cambridge University Press, 1990).
[006] [7] T. Parthasarathy and G. Ravindran, N-matrices, Linear Algebra Appl. 139 (1990) 89-102. doi: 10.1016/0024-3795(90)90390-X
[007] [8] R. Smith and Shu-An Hu, Inequalities for monotonic pairs of Z-matrices, Lin. Mult. Alg. 44 (1998) 57-65. doi: 10.1080/03081089808818548 | Zbl 0907.15015
[008] [9] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics (Springer, New York, 2000). | Zbl 0998.65505