Intervals of certain classes of Z-matrices
M. Rajesh Kannan ; K.C. Sivakumar
Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014), p. 85-93 / Harvested from The Polish Digital Mathematics Library

Let A and B be M-matrices satisfying A ≤ B and J = [A,B] be the set of all matrices C such that A ≤ C ≤ B, where the order is component wise. It is rather well known that if A is an M-matrix and B is an invertible M-matrix and A ≤ B, then aA + bB is an invertible M-matrix for all a,b > 0. In this article, we present an elementary proof of a stronger version of this result and study corresponding results for certain other classes as well.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270177
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216,
     author = {M. Rajesh Kannan and K.C. Sivakumar},
     title = {Intervals of certain classes of Z-matrices},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {34},
     year = {2014},
     pages = {85-93},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216}
}
M. Rajesh Kannan; K.C. Sivakumar. Intervals of certain classes of Z-matrices. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1216/

[000] [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (SIAM, Philadelphia, 1994). | Zbl 0815.15016

[001] [2] R.W. Cottle, A field guide to the matrix classes found in the literature of the linear complementarity problem, J. Global Optim. 46 (2010) 571-580. doi: 10.1007/s10898-009-9441-z | Zbl 1193.90203

[002] [3] L. Hogben, Discrete Mathematics and Its Applications: Handbook of Linear Algebra (CRC Press, 2006).

[003] [4] G.A. Johnson, A generalization of N-matrices, Linear Algebra Appl. 48 (1982) 201-217. doi: 10.1016/0024-3795(82)90108-2

[004] [5] Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29 (1966) 185-196. doi: 10.1007/BF03016047

[005] [6] A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications (Cambridge University Press, 1990).

[006] [7] T. Parthasarathy and G. Ravindran, N-matrices, Linear Algebra Appl. 139 (1990) 89-102. doi: 10.1016/0024-3795(90)90390-X

[007] [8] R. Smith and Shu-An Hu, Inequalities for monotonic pairs of Z-matrices, Lin. Mult. Alg. 44 (1998) 57-65. doi: 10.1080/03081089808818548 | Zbl 0907.15015

[008] [9] R.S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics (Springer, New York, 2000). | Zbl 0998.65505