This paper is a continuation of our previous paper entitled "On 2-primal Γ-semirings". In this paper we have introduced the notion of 2-primal ideal in Γ-semiring and studied it.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1215, author = {Suhrid Dhara and Tapan Kumar Dutta}, title = {Some characterizations of 2-primal ideals of a $\Gamma$-semiring}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {34}, year = {2014}, pages = {95-107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1215} }
Suhrid Dhara; Tapan Kumar Dutta. Some characterizations of 2-primal ideals of a Γ-semiring. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 95-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1215/
[000] [1] C. Selvaraj and S. Petchimuthu, Characterization of 2-Primal Γ-Rings, Southeast Asian Bull. Math. 34 (2010) 1083-1094. | Zbl 1224.16112
[001] [2] C. Selvaraj and S. Petchimuthu, Characterization of 2-primal ideals, Far East J. Math. Sci. 28 (2008) 249-256. | Zbl 1147.16003
[002] [3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely Prime Ideals and Associated Radicals, in: Proc. Biennial Ohio State-Denision Conference 1992, S.K. Jain and S.T. Rizvi (Ed(s)), (World Scientific, New Jersey, 1993) 102-129. | Zbl 0853.16022
[003] [4] M.M.K. Rao, Γ-semiring-I, Southeast Asian Bull. Math. 19 (1995) 49-54.
[004] [5] M.M.K. Rao, Γ-semiring-II, Southeast Asian Bull. Math. 21 (1997) 281-287.
[005] [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964) 81-89. | Zbl 0135.02701
[006] [7] P.J. Allen and W.R. Windham, Operator semigroup with applications to semiring, Publicationes Mathematicae 20 (1973) 161-175. | Zbl 0278.20066
[007] [8] S.K. Sardar, On Jacobson radical of a Γ-semiring, Far East J. Math. Sci. 35 (2005) 1-9. | Zbl 1105.16041
[008] [9] S.K. Sardar and U. Dasgupta, On primitive Γ-semiring, Far East J. Math. Sci. 34 (2004) 1-12. | Zbl 1212.16093
[009] [10] T.K. Dutta and S.K. Sardar, On prime ideals and prime radical of a Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' IAŞI, Matematică Tomul XLVI.s.I.a, f.2 (2000) 319-329.
[010] [11] T.K. Dutta and S.K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad J. Math. 30 (2000) 97-108. | Zbl 1005.16045
[011] [12] T.K. Dutta and S.K. Sardar, On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math., Springer-Verlag 26 (2002) 203-213. | Zbl 1035.16039
[012] [13] T.K. Dutta and S.K. Sardar, On Levitzki radical of a Γ-semiring, Bull. Calcutta Math. Soc. 95 (2003) 113-120. | Zbl 1058.16040
[013] [14] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings, Southeast Asian Bull. Math. 30 (2006) 39-48. | Zbl 1117.16034
[014] [15] T.K. Dutta and S. Dhara, On uniformly strongly prime Γ-semirings (II), Discuss. Math. General Algebra and Appl. 26 (2006) 219-231. | Zbl 1130.16310
[015] [16] T.K. Dutta and S. Dhara, On strongly prime Γ-semirings, ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII 'AL.I.CUZA' DIN IAŞI(S. N.) Matematică Tomul LV, f.1 (2009) 213-224.
[016] [17] T.K. Dutta and S. Dhara, On 2-primal Γ-semirings, Southeast Asian Bull. Math. 37 (2013) 699-714. | Zbl 1299.16043
[017] [18] T.K. Dutta, K.P. Shum and S. Dhara, On NI Γ-semirings, Int. J. Pure and Appl. Math. 84 (2013) 279-298. doi: 10.12732/ijpam.v84i3.14.
[018] [19] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966) 411-422. doi: 10.2140/pjm.1966.18.411. | Zbl 0161.03303