In this paper we show that there exists an infinite family of pairwise non-isomorphic entropic quasigroups with quasi-identity which are directly indecomposable and they are two-generated.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1214, author = {Grzegorz Bi\'nczak and Joanna Kaleta}, title = {Some finite directly indecomposable non-monogenic entropic quasigroups with quasi-identity}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {34}, year = {2014}, pages = {5-26}, zbl = {06568361}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1214} }
Grzegorz Bińczak; Joanna Kaleta. Some finite directly indecomposable non-monogenic entropic quasigroups with quasi-identity. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 5-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1214/
[000] [1] G. Bińczak and J. Kaleta, Cyclic entropic quasigroups, Demonstratio Math. 42 (2009) 269-281. | Zbl 1195.20068
[001] [2] G. Bińczak and J. Kaleta, Finite simple monogenic entropic quasigroups with quasi-identity, Demonstratio Math. 44 (2011) 17-27. | Zbl 1230.20063
[002] [3] G. Bińczak and J. Kaleta, Finite directly indecomposable monogenic entropic quasigroups with quasi-identity, Demonstratio Math. 45 (2012) 519-532. | Zbl 1279.20078
[003] [4] O. Chein, H.O. Pflugfelder and J.D.H. Smith, Quasigroups and Loops: Theory and Applications (Heldermann Verlag, Berlin, 1990). | Zbl 0719.20036
[004] [5] J.J. Rotman, An Introduction to the Theory of Groups (Springer-Verlag, New York, 1994).
[005] [6] J.D.H. Smith, Representation Theory of Infinite Groups and Finite Quasigroups (Université de Montréal, 1986). | Zbl 0609.20042