An ideal-based zero-divisor graph of direct products of commutative rings
S. Ebrahimi Atani ; M. Shajari Kohan ; Z. Ebrahimi Sarvandi
Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014), p. 45-53 / Harvested from The Polish Digital Mathematics Library

In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a finite direct product of commutative rings.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270743
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1211,
     author = {S. Ebrahimi Atani and M. Shajari Kohan and Z. Ebrahimi Sarvandi},
     title = {An ideal-based zero-divisor graph of direct products of commutative rings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {34},
     year = {2014},
     pages = {45-53},
     zbl = {1313.16095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1211}
}
S. Ebrahimi Atani; M. Shajari Kohan; Z. Ebrahimi Sarvandi. An ideal-based zero-divisor graph of direct products of commutative rings. Discussiones Mathematicae - General Algebra and Applications, Tome 34 (2014) pp. 45-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1211/

[000] [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840. | Zbl 0941.05062

[001] [2] M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. Math. 32 (2006) 985-994. | Zbl 1110.13004

[002] [3] D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings in commutative Algebra-Noetherian and Non-Noetherian Perspectives (M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson, Eds), (Springer-Verlag, New York, 2011) 23-45. doi: 10.1007/978-1-4419-6990-3_2

[003] [4] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092. doi: 10.1080/00927870802110888. | Zbl 1152.13001

[004] [5] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1998) 208-226. doi: 10.1016/0021-8693(88)90202-5.

[005] [6] S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. Gen. Algebra Appl. 31 (2011) 127-145. doi: 10.7151/dmgaa.1178. | Zbl 1255.05094

[006] [7] S. Ebrahimi Atani and M. Shajari Kohan, L-zero-divisor graphs of direct products of L-commutative rings, Discuss. Math. Gen. Algebra Appl. 31 (2011) 159-174. doi: 10.7151/dmgaa.1180. | Zbl 1255.05095

[007] [8] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003) 4425-4443. doi: 10.1081/AGB-120022801. | Zbl 1020.13001