In this paper, some fundamental properties of maximal μ-open sets such as decomposition theorem for a maximal μ-open set, are given in a generalized topological space. Some basic properties of intersection of maximal μ-open sets are established, cohere the law of μ-radical μ-closure in a quasi topological space is obtained, among the other things.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1209, author = {Bishwambhar Roy and Ritu Sen}, title = {Applications of maximal $\mu$-open sets in generalized topology and quasi topology}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {129-135}, zbl = {1297.54006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1209} }
Bishwambhar Roy; Ritu Sen. Applications of maximal μ-open sets in generalized topology and quasi topology. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 129-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1209/
[000] [1] À. Csàszàr, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002) 351-357. doi: 10.1023/A:1019713018007. | Zbl 1006.54003
[001] [2] À. Csàszàr, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005) 53-66. doi: 10.1007/s10474-005-0005-5. | Zbl 1076.54500
[002] [3] À. Csàszàr, Remarks on quasi topologies, Acta Math. Hungar. 119 (2008) 197-200. doi: 10.1007/s10474-007-7023-4. | Zbl 1164.54002
[003] [4] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945) 300-320. doi: 10.2307/2371731. | Zbl 0060.07305
[004] [5] W.K. Min, A note on quasi-topological spaces, Honam Math. Jour. 33 (2011) 11-17. doi: 10.5831/HMJ.2011.33.1.011.
[005] [6] F. Nakaoka and N. Oda, Some applications of minimal open sets, Int. Jour. Math. Math. Sci. 27(8) (2001) 471-476. doi: 10.1155/S0161171201006482. | Zbl 1009.54001
[006] [7] F. Nakaoka and N. Oda, Some properties of maximal open sets, Int. Jour. Math. Math. Sci. 21 (2003) 1331-1340. doi: 10.1155/S0161171203207262. | Zbl 1076.54501
[007] [8] B. Roy and R. Sen, Maximal μ-open and minimal μ-closed sets via generalized topology, Acta Math. Hungar. 136 (2012) 233-239. doi: 10.1007/s10474-012-0201-z. | Zbl 1299.54010