A note on semidirect sum of Lie algebras
Tadeusz Ostrowski
Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013), p. 233-247 / Harvested from The Polish Digital Mathematics Library

In the paper there are investigated some properties of Lie algebras, the construction which has a wide range of applications like computer sciences (especially to computer visions), geometry or physics, for example. We concentrate on the semidirect sum of algebras and there are extended some theoretic designs as conditions to be a center, a homomorphism or a derivative. The Killing form of the semidirect sum where the second component is an ideal of the first one is considered as well.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270203
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1208,
     author = {Tadeusz Ostrowski},
     title = {A note on semidirect sum of Lie algebras},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {33},
     year = {2013},
     pages = {233-247},
     zbl = {06329388},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1208}
}
Tadeusz Ostrowski. A note on semidirect sum of Lie algebras. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 233-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1208/

[000] [1] V.I. Arnold, Theorem on altitudes of a triangle in the Lobachevsky geometry as the Jacobi identity in the Lie algebras of quadratic forms in the simplectic plane, Math. Prosveschenie. Third Series 9 (2005), 93-99.

[001] [2] M.R. Bremer, I.R. Hentzel and L.A. Peresi, Dimension formulas for the free nonassociative algebra, Communications in Algebra 33 (2005), 4063-4081. doi: 10.1080/00927870500261389 | Zbl 1145.17300

[002] [3] H. Bass, J. Oesterle and A. Weinstein, Poisson Structures and Their Normal Forms (Birkhauser Basel, 2005). doi: 10.1007/b137493

[003] [4] J.M. Ancochea Bermudez, R. Campoamor-Stursberg and L. Garcia Vergnolle, Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical, Internat. Math. Forum 7 (2006), 309-316. | Zbl 1142.17300

[004] [5] R.W. Carter, Lie Algebras of Finite and Affine Type (Cambridge University Press, 2005). doi: 10.1017/CBO9780511614910

[005] [6] K. Erdmann and M.J. Windon, Introduction to Lie Algebras (Springer-Verlag London, 2006).

[006] [7] A. Figula and K. Strambach, Loops which are semidirect products of groups, Acta Mathematica Hungarica 114 (2007), 247-266. doi: 10.1007/s10474-006-0529-3 | Zbl 1123.20061

[007] [8] E.A. de Kerf, G.A. Bauerle and A.P. Kroode, Lie Algebras, E. van Groesen, E.M. de Jager (Editors), Elsevier Science (1997).

[008] [9] B.C. Hall, Lie Groups, Lie Algebras, and Representations (Springer-Verlag, NY, 2004).

[009] [10] D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincare equations and semidirect products with applications to continuum theories, Advances in Mathematics 137 (1998), 1-81. doi: 10.1006/aima.1998.1721 | Zbl 0951.37020

[010] [11] F. Iachello, Lie Algebras and Applications (Springer-Verlag, Berlin, Heidelberg, 2006). | Zbl 1156.17006

[011] [12] A. Kirillov, Jr., An Introduction to Lie Groups and Lie Algebras (Cambridge University Press, 2008). doi: 10.1017/CBO9780511755156

[012] [13] J.E. Marsden, G. Misiolek, M. Perlmutter and T.S. Ratiu, Sympletic reduction for semidirect products and central extensions, Differential Geometry and its Applications 9 (1998), 173-212. doi: 10.1016/S0926-2245(98)00021-7 | Zbl 0973.53069

[013] [14] E. Mundt, Constant Young-Mills potentials, Journal of Lie Theory 3 (1993), 107-115. | Zbl 0776.53055

[014] [15] A.L. Onishchik and E.B. Vinberg (Editors), Lie Groups and Lie Algebras (Springer, New York, 1994). doi: 10.1007/978-3-662-03066-0 | Zbl 0813.53015

[015] [16] D.I. Panyushev, Semi-direct products of Lie algebras and their invariants, Publications of the Research Institute for Mathematical Sciences, Kyoto University 43 (2007), 1199-1257. doi: 10.2977/prims/1201012386 | Zbl 1151.14036

[016] [17] V.M. Petrogradsky, Y.P. Razmyslov and E.O. Shishkin, Wreath products and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer. Math. Soc. 135 (2007), 625-636. doi: 10.1090/S0002-9939-06-08502-9 | Zbl 1173.17008

[017] [18] H. Samelson, Notes on Lie Algebras (Springer-Verlag Berlin and Heidelberg, 1990). doi: 10.1007/978-1-4613-9014-5

[018] [19] V.I. Suhchansky and N.V. Netreba, Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of infinite symmetric groups, Algebra and Discrete Math. 1 (2005), 122-132. | Zbl 1122.17006

[019] [20] W.H. Steeb, Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra (World Scientific Publishing Co., 2007). PMid:17361179

[020] [21] D.H. Sattinger and O.L. Weaver, Lie groups and Algebras with Applications to Physics, Geometry and Mechanics (Springer-Verlag, 1993). | Zbl 0595.22017

[021] [22] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Springer-Verlag, New York Inc., 1984). doi: 10.1007/978-1-4612-1126-6