Nil-extensions of completely simple semirings
Sunil K. Maity ; Rituparna Ghosh
Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013), p. 201-209 / Harvested from The Polish Digital Mathematics Library

A semiring S is said to be a quasi completely regular semiring if for any a ∈ S there exists a positive integer n such that na is completely regular. The present paper is devoted to the study of completely Archimedean semirings. We show that a semiring S is a completely Archimedean semiring if and only if it is a nil-extension of a completely simple semiring. This result extends the crucial structure theorem of completely Archimedean semigroup.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270632
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1206,
     author = {Sunil K. Maity and Rituparna Ghosh},
     title = {Nil-extensions of completely simple semirings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {33},
     year = {2013},
     pages = {201-209},
     zbl = {1301.16054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1206}
}
Sunil K. Maity; Rituparna Ghosh. Nil-extensions of completely simple semirings. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 201-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1206/

[000] [1] S. Bogdanovic and S. Milic, A nil-extension of a completely simple semigroup, Publ. Inst. Math. 36 (50) (1984) 45-50. | Zbl 0567.20041

[001] [2] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985). | Zbl 0569.20049

[002] [3] R. El Bashir, J. Hurt, A. Jancarik and T. Kepka, Simple commutative semirings, J. Algebra 236 (2001) 277-306. doi: 10.1006/jabr.2000.8483. | Zbl 0976.16034

[003] [4] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science (Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman Sci. Tech., Harlow, 1992).

[004] [5] U. Hebisch and J.H. Weinert, Semirings, Algebraic Theory and Applications in Computer Science, Series in Algebra Vol. 5 (World Scientific Singapore, 1998). | Zbl 0934.16046

[005] [6] J. M. Howie, Introduction to the Theory of Semigroups (Academic Press, 1976).

[006] [7] N. Kehayopulu and K.P. Shum, Ideal extensions of regular poe-semigroups, Int. Math. J. 3 (2003) 1267-1277. | Zbl 1231.06019

[007] [8] S.K. Maity, Congruences in additive inverse semirings, Southeast Asian Bull. Math. 30 (3) (2001) 473-484. | Zbl 1122.16040

[008] [9] S.K. Maity and R. Ghosh, On quasi Completely Regular Semirings, (Accepted for publication in Semigroup Forum).

[009] [10] C. Monico, On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/j.jalgebra.2003.09.034. | Zbl 1041.16041

[010] [11] F. Pastijn and Y.Q. Guo, The lattice of idempotent distributive semiring varieties, Science in China (Series A) 42 (8) (1999) 785-804. doi: 10.1007/BF02884266 | Zbl 0947.16036

[011] [12] F. Pastijn and X. Zhao, Varieties of idempotent semirings with commutative addition, Algebra Universalis 54 (3) (2005) 301-321. doi: 10.1007/s00012-005-1947-8 | Zbl 1084.16039

[012] [13] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999). | Zbl 0967.20034

[013] [14] M.K. Sen, S.K. Maity and K.P. Shum, Clifford semirings and generalized Clifford semirings, Taiwanese J. Math. 9 (3) (2005) 433-444. | Zbl 1091.16028

[014] [15] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 88 (2006) 319-328. | Zbl 1115.16026

[015] [16] X. Zhao, K.P. Shum and Y.Q. Guo, 𝓛-subvarieties of the variety of idempotent semirings, Algebra Universalis 46 (1-2) (2001) 75-96. doi: 10.1007/PL00000348 | Zbl 1063.08009

[016] [17] X. Zhao, Y.Q. Guo and K.P. Shum, 𝓓-subvarieties of the variety of idempotent semirings, Algebra of Colloqium 9 (1) (2002) 15-28. | Zbl 1004.16050