We introduce the concept of vague ideals in a distributive implication groupoid and investigate their properties. The vague ideals of a distributive implication groupoid are also characterized.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1202, author = {Ravi Kumar Bandaru and K.P. Shum}, title = {Vague ideals of implication groupoids}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {221-231}, zbl = {1303.06010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1202} }
Ravi Kumar Bandaru; K.P. Shum. Vague ideals of implication groupoids. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 221-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1202/
[000] [1] J.C. Abbott, Semi-boolean algebras, Mathematicki Vensik, 19 (4) (1976), 177-198. http://www.digizeitschriften.de/en/dms/img/?PPN=PPN311571026_0019&DMDID=dmdlog47.
[001] [2] P. Bhattacharya and N.P. Mukherjee, Fuzzy relations and fuzzy groups, Inform. Sci. 36 (1985), 267-282. doi: 10.1016/0020-0255(85)90057-X | Zbl 0599.20003
[002] [3] R. Biswas, Vague groups, International Journal of Computational Cognition 4 (2) (2006), 20-23. http://www.yangsky.com/ijcc/pdf/ijcc423.pdf
[003] [4] I. Chajda and R. Hala, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429-432 (preprint).
[004] [5] I. Chajda and R. Hala R, Distributive implicaiton groupoids, Central European Journal of Mathematics 5 (3) (2007), 484-492. doi: 10.2478/s11533-007-0021-5
[005] [6] W.A. Dudek and Y.B. Jun, On fuzzy ideals in Hilbert algebras, Novi Sad J. Math. 29 (2) (1999), 193-207. ftp://ftp.gwdg.de/pub/EMIS/journals/NSJOM/Papers/29_2/NSJOM_29_2_193_207.pdf | Zbl 0989.03072
[006] [7] W.L. Gau and D.L. Buehrer, Vague sets, IEEE Transactions on systems-Man and Cybernetics 23 (1993), 610-614. doi: 10.1109/21.229476 | Zbl 0782.04008
[007] [8] Y.B. Jun and S.M. Hong, On fuzzy deductive systems of Hilbert algebras, Indian Journal of Pure and Applied Mathematics 27 (2) (1996), 141-151. http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a24_141.pdf. | Zbl 0851.46054
[008] [9] Y.B. Jun and C.H. Park, Vague ideals of subtraction algebra, International Mathematical Forum 2 (2007), 2919-2926. http://www.m-hikari.com/imf-password2007/57-60-2007/parkIMF57-60-2007-1.pdf. | Zbl 1135.03350
[009] [10] J.N. Mordeson and D.S. Malik, Fuzzy Commutative algebra, World Scientific Publishing Co. pvt. Ltd, Singapore, 1998. http://www.worldscientific.com/worldscibooks/10.1142/3929. | Zbl 1026.13002
[010] [11] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X | Zbl 0139.24606