A flower is a coin graph representation of the wheel graph. A petal of a flower is an outer coin connected to the center coin. The results of this paper are twofold. First we derive a parametrization of all the rational (and hence integer) radii coins of the 3-petal flower, also known as Apollonian circles or Soddy circles. Secondly we consider a general n-petal flower and show there is a unique irreducible polynomial Pₙ in n variables over the rationals ℚ, the affine variety of which contains the cosinus of the internal angles formed by the center coin and two consecutive petals of the flower. In that process we also derive a recursion that these irreducible polynomials satisfy.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1200, author = {Geir Agnarsson and Jill Bigley Dunham}, title = {On rational radii coin representations of the wheel graph}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {167-199}, zbl = {1300.05189}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1200} }
Geir Agnarsson; Jill Bigley Dunham. On rational radii coin representations of the wheel graph. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 167-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1200/
[000] [1] E.M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Matematicheskiĭ Sbornik. Novaya Seriya 81 (123) (1970) 445-478.
[001] [2] D. Austin, When Kissing Involves Trigonometry, AMS Features Column 9 (1999).
[002] [3] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
[003] [4] G.R. Brightwell and E.R. Scheinerman, Representations of planar graphs, SIAM J. Discrete Math. 6 (1993) 214-229. doi: 10.1137/0406017 | Zbl 0782.05026
[004] [5] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: number theory, J. Number Theory 100 (2003) 1-45. doi: 10.1016/S0022-314X(03)00015-5 | Zbl 1026.11058
[005] [6] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. I. The Apollonian group, Discrete Comput. Geom. 34 (4) (2005) 547-585. doi: 10.1007/s00454-005-1196-9 | Zbl 1085.52010
[006] [7] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. II. Super-Apollonian group and integral packings, Discrete Comput. Geom. 35 (1) (2006) 1-36. doi: 10.1007/s00454-005-1195-x | Zbl 1085.52011
[007] [8] R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks and C.H. Yan, Apollonian circle packings: geometry and group theory. III. Higher dimensions, Discrete Comput. Geom. 35 (1) (2006) 37-72. doi: 10.1007/s00454-005-1197-8 | Zbl 1085.52012
[008] [9] E. Fuchs and K. Sanden, Some experiments with integral Apollonian circle packings, Exp. Math. 20 (4) (2011) 380-399. doi: 10.1080/10586458.2011.565255 | Zbl 1259.11065
[009] [10] T. Hungerford, Algebra, Graduate Texts in Mathematics, GTM-73 Springer-Verlag, 1974.
[010] [11] P. Koebe, Kontaktprobleme der konformen Abbildung, Ber. Verh. Sächs, Akademie der Wissenshaften Leipzig, Math.-Phys. Klasse 88 (1936) 141-164.
[011] [12] MAPLE, mathematics software tool for symbolic computation, http://www.maplesoft.com/products/Maple/academic/index.aspx
[012] [13] K.H. Rosen, Elementary Number Theory and Its Applications, Pearson Addison Wesley, 2005.
[013] [14] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge University Press, 2005. | Zbl 1074.52008
[014] [15] W. Thurston, Three-Dimensional Geometry and Topology, Princeton University Press, 1997. | Zbl 0873.57001
[015] [16] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, GMT-152 Springer Verlag, 1995. doi: 10.1007/978-1-4613-8431-1