We introduce the k-radicals of Green's relations in semirings with a semilattice additive reduct, introduce the notion of left k-regular (right k-regular) semirings and characterize these semirings by k-radicals of Green's relations. We also characterize the semirings which are distributive lattices of left k-simple subsemirings by k-radicals of Green's relations.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1198, author = {Tapas Kumar Mondal and Anjan Kumar Bhuniya}, title = {On k-radicals of Green's relations in semirings with a semilattice additive reduct}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {85-93}, zbl = {1288.16060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1198} }
Tapas Kumar Mondal; Anjan Kumar Bhuniya. On k-radicals of Green's relations in semirings with a semilattice additive reduct. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 85-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1198/
[000] [1] A.K. Bhuniya, On the additively regular semirings, Ph.D Thesis, University of Calcutta, 2009.
[001] [2] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. General Algebra and Applications 31 (2011) 5-25. ISSN 2084-0373 | Zbl 1254.16040
[002] [3] A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with a semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6 | Zbl 1205.16039
[003] [4] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of left k-Archimedean semirings, Semigroup Forum (to appear). ISSN 1432-2137 | Zbl 1274.16066
[004] [5] A.K. Bhuniya and T.K. Mondal, Semirings which are distributive lattices of k-simple semirings, Southeast Asian Bulletin of Mathematics 36 (2012) 309-318. ISSN 0129-2021 | Zbl 1274.16066
[005] [6] S. Bogdanović and M. Ćirić, A note on radicals of Green's relations, PU.M.A 7 (1996) 215-219. ISSN 1218-4586 | Zbl 0880.20045
[006] [7] S. Bogdanović and M. Ćirić, A note on left regular semigroups Publ. Math. Debrecen 48 (3-4) (1996) 285-291. ISSN 0033-3883 | Zbl 1259.20063
[007] [8] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc., 1977. ISBN 0-8218-0271-2
[008] [9] A.H. Clifford, Semigroups admitting relative inverses, Ann. Math. 42 (1941) 1037-1049. ISSN 1939-0980 | Zbl 0063.00920
[009] [10] U. Hebisch and H.J. Weinert, Semirings. Algebraic Theory and Applications in Computer Science (Singapore, World Scientific, 1998). ISBN 981-02-3601-8 | Zbl 0934.16046
[010] [11] J.M. Howie, Fundamentals of semigroup theory (Clarendon, Oxford, 1995). Reprint in 2003. ISBN 0-19-851194-9 | Zbl 0835.20077
[011] [12] G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Editor), (Cambridge, Cambridge Univ. Press, 1998) 420-443. | Zbl 0897.68050
[012] [13] G.L. Litvinov, V.P. Maslov and A.N. Sobolevskii, Idempotent Mathematics and Interval Analysis, Preprint ESI 632, The Erwin Schrödinger International Institute for Mathematical Physics, Vienna, 1998; e-print: http://www.esi.ac.at and http://arXiv.org,math.Sc/9911126.
[013] [14] T.K. Mondal, Distributive lattices of t-k-Archimedean semirings, Discuss. Math. General Algebra and Applications 31 (2011), 147-158. doi: 10.7151/dmgaa.1179 | Zbl 1254.16042
[014] [15] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, submitted. | Zbl 1274.16066
[015] [16] M.K. Sen and A.K. Bhuniya, On semirings whose additive reduct is a semilattice, Semigroup forum 82 (2011) 131-140. doi: 10.1007/s00233-010-9271-9 | Zbl 1248.16038
[016] [17] L.N. Shevrin, Theory of epigroups I, Mat. Sbornic 185 (8) (1994) 129-160. ISSN 1468-4802 | Zbl 0839.20073
[017] [18] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. ISSN 1088-9485 | Zbl 0010.38804