A semigroup S is said to be completely π-regular if for any a ∈ S there exists a positive integer n such that aⁿ is completely regular. The present paper is devoted to the study of completely regular semigroup congruences on bands of π-groups.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1197, author = {Sunil K. Maity}, title = {Congruences on bands of $\pi$-groups}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {5-11}, zbl = {1288.20082}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1197} }
Sunil K. Maity. Congruences on bands of π-groups. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 5-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1197/
[000] [1] S. Bogdanovic, Semigroups with a System of Subsemigroups (Novi Sad, 1985). | Zbl 0569.20049
[001] [2] S. Bogdanovic and M. Ciric, Retractive Nil-extensions of Bands of Groups, Facta Universitatis 8 (1993) 11-20. | Zbl 0831.20073
[002] [3] T.E. Hall, On Regular Semigroups, J. Algebra 24 (1973) 1-24. doi: 10.1016/0021-8693(73)90150-6.
[003] [4] J.M. Howie, Introduction to the theory of semigroups (Academic Press, 1976).
[004] [5] D.R. LaTorre, Group Congruences on Regular semigroups, Semigroup Forum 24 (1982) 327-340. doi: 10.1007/BF02572776. | Zbl 0487.20039
[005] [6] P.M. Edwards, Eventually Regular Semigroups, Bull. Austral. Math. Soc 28 (1982) 23-38. doi: 10.1017/S0004972700026095. | Zbl 0511.20044
[006] [7] W.D. Munn, Pseudo-inverses in Semigroups, Proc. Camb. Phil. Soc. 57 (1961) 247-250. doi: 10.1017/S0305004100035143. | Zbl 0228.20057
[007] [8] M. Petrich, Regular Semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J. 14 (1973) 27-49. doi: 10.1017/S0017089500001701. | Zbl 0257.20055
[008] [9] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999). | Zbl 0967.20034
[009] [10] S.H. Rao and P. Lakshmi, Group Congruences on Eventually Regular Semigroups, J. Austral. Math. Soc. (Series A) 45 (1988) 320-325. doi: 10.1017/S1446788700031025. | Zbl 0665.20032
[010] [11] S. Sattayaporn, The Least Group Congruences On Eventually Regular Semigroups, International Journal of Algebra 4 (2010) 327-334. | Zbl 1208.20051
[011] [12] J. Zeleznekow, Regular semirings, Semigroup Forum 23 (1981) 119-136. doi: 10.1007/BF02676640.