Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications, 431 (2009), 1293-1301.] proved if G is a unicyclic graph, then η(G) equals n - 2ν(G) - 1, n-2ν(G) or n - 2ν(G) + 2. Barrett et al. determined the inertia sets for trees and graphs with cut vertices. In this paper, we give the nullity of bicyclic graphs 𝓑ₙ⁺⁺. Furthermore, we determine the inertia set in unicyclic graphs and 𝓑ₙ⁺⁺, respectively.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1196, author = {Ying Liu}, title = {The inertia of unicyclic graphs and bicyclic graphs}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {109-115}, zbl = {1293.05213}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1196} }
Ying Liu. The inertia of unicyclic graphs and bicyclic graphs. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 109-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1196/
[000] [1] W. Barrett, H. Tracy Hall and R. Loewy, The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample, Linear Algebra and its Applications 431 (2009) 1147-1191. doi: 10.1016/j.laa.2009.04.007. | Zbl 1175.05032
[001] [2] D. Cvetkociić, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application (Academic Press, New York, 1980).
[002] [3] D. Cvetkocić, I. Gutman and N. Trinajstić, Graph theory and molecular orbitals II, Croat.Chem. Acta 44 (1972) 365-374.
[003] [4] S. Fiorini, I. Gutman and I. Sciriha, Trees with maximum nullity, Linear Algebra and its Applications 397 (2005) 245-252. doi: 10.1016/j.laa.2004.10.024.
[004] [5] Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh, On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications 431 (2009) 1293-1301. doi: 10.1016/j.laa.2009.04.026. | Zbl 1238.05160
[005] [6] Shengbiao Hu, Tan Xuezhong and Bolian Liu, On the nullity of bicyclic graphs, Linear Algebra and its Applications 429 (2008) 1387-1391. doi: 10.1016/j.laa.2007.12.007. | Zbl 1144.05319