In this paper we characterize both the Clifford and left Clifford ordered semigroups by their bi-ideals and quasi-ideals. Also we characterize principal bi-ideal generated by an ordered idempotent in a completely regular ordered semigroup.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1195, author = {Kalyan Hansda}, title = {Bi-ideals in Clifford ordered semigroup}, journal = {Discussiones Mathematicae - General Algebra and Applications}, volume = {33}, year = {2013}, pages = {73-84}, zbl = {1303.06014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1195} }
Kalyan Hansda. Bi-ideals in Clifford ordered semigroup. Discussiones Mathematicae - General Algebra and Applications, Tome 33 (2013) pp. 73-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1195/
[000] [1] A.K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, communicated.
[001] [2] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624-625.
[002] [3] U. Hebisch and H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998. | Zbl 0934.16046
[003] [4] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
[004] [5] A. Iampan, On bi-ideals of semigroups, Lobachevskii J. Math. 29 (2) (2008) 68-72. doi: 10.1134/S1995080208020042 | Zbl 1165.20321
[005] [6] N. Kehayopulu, Note on Green's relation in ordered semigroup, Math. Japonica 36 (1991) 211-214.
[006] [7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1992) 123-130. | Zbl 0745.06007
[007] [8] N. Kehayopulu, On regular duo ordered semigroups, Math. Japonica 37 (1992) 535-540. | Zbl 0760.06006
[008] [9] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sciences 112 (4) (2002). ISSN: 1573-8795
[009] [10] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, International Journal of Mathematics and Mathematical Sciences (2006), 1-8, Article ID 61286. doi: 10.1155/IJMMS/2006/61286
[010] [11] S. Lajos, On (m,n)-ideals of semigroups, Abstract of Second Hunger. Math. Congress I (1960) 42-44.
[011] [12] S. Lajos, On the bi-ideals in Semigroups, Proc. Japan Acad. 45 (8) (1969) 710-712. doi: 10.3792/pja/1195520625 | Zbl 0199.33702
[012] [13] S. Lajos, Notes on semilattices of groups, Proc. Japan Acad. 46 (2) (1970) 151-152. doi: 10.3792/pja/1195520460 | Zbl 0205.02402
[013] [14] S. Lajos, A characterization of Cliffordian semigroups, Proc. Japan Acad. 52 (9) (1976) 496-497. doi: 10.3792/pja/1195518214 | Zbl 0374.20068
[014] [15] S. Lajos, Some characterization of regular duo semigroup, Proc. Japan Acad. 46 (10) (1970) 1099-1101. doi: 10.3792/pja/1195526501 | Zbl 0209.04901
[015] [16] S. Lee and S. Kang, Characterization of regular po-semigroup, Commu. Korean Math. Soc. 14 (4) (1999) 687-691. | Zbl 0969.06014
[016] [17] M.M. Miccoli, Bi-ideals in regular semigroups and orthogroups, Acta. Math. Hung. 47 (1-2) (1986) 3-6. doi: 10.1007/BF01949118
[017] [18] O. Steinfeld, Quasi-ideals in rings and regular semigroups, Akademiai Ki-ado, Budapest (1958). doi: 10.1007/BF02572529