Derivations in some finite endomorphism semirings
Ivan Dimitrov Trendafilov
Discussiones Mathematicae - General Algebra and Applications, Tome 32 (2012), p. 77-100 / Harvested from The Polish Digital Mathematics Library

The goal of this paper is to provide some basic structure information on derivations in finite semirings.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270558
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1191,
     author = {Ivan Dimitrov Trendafilov},
     title = {Derivations in some finite endomorphism semirings},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {32},
     year = {2012},
     pages = {77-100},
     zbl = {1284.16047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1191}
}
Ivan Dimitrov Trendafilov. Derivations in some finite endomorphism semirings. Discussiones Mathematicae - General Algebra and Applications, Tome 32 (2012) pp. 77-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1191/

[000] [1] Rings with generalized identities (Marcel Dekker, 1996).

[001] [2] Classical Finite Transformation Semigroups: An Introduction (Springer-Verlag London Limited, 2009). doi: 10.1007/978-1-84800-281-4 | Zbl 1166.20056

[002] [3] Semirings and Their Applications (Kluwer, Dordrecht, 1999). | Zbl 0947.16034

[003] [4] Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. doi: 10.1090/S0002-9939-1957-0095864-2

[004] [5] Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961) 517-531. doi: 10.1090/S0002-9904-1961-10666-6 | Zbl 0107.02704

[005] [6] Noncommutative Rings (Carus Mathematical Monographs, 1968). | Zbl 0177.05801

[006] [7] On the Lie structure of an associative ring, J. Algebra 14 (1970) 561-571. doi: 10.1016/0021-8693(70)90103-1 | Zbl 0213.04601

[007] [8] J. Jeẑek, T. Kepka and M. Maròti, The endomorphism semiring of a semilattice, Semigroup Forum 78 (2009) 21-26. doi: 10.1007/s00233-008-9045-9 | Zbl 1171.16024

[008] [9] Differential Algebra and Algebraic Groups (Academic Press, New York, London, 1973).

[009] [10] On finite congruence-simple semirings, J. Algebra 271 (2004) 846-854. doi: 10.1016/jalgebra2003.09.034 | Zbl 1041.16041

[010] [11] Differential Algebra (Amer. Math. Soc. Colloq. Publ. 33, New York 1950).

[011] [12] The endomorphism semiring of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[012] [13] Endomorphism semirings without zero of a finite chain, Proc. Techn. Univ.-Sofia 61 (2011) 9-18 ISSN 1311-0829

[013] [14] I. Trendafilov and D. Vladeva, On some subsemigroups of the partial transformation semigroup, in: Appl.Math. in Eng. and Econ.-38th Int. Conf. 2012, G.Venkov(Ed(s)), (AIP Conf. Proc. 1497, 2012) 371-378. doi: 10.1063/1.4766807

[014] [15] Classification of finite congruence-simple semirings with zero, J. Algebra Appl. 7 (2008) 363-377. doi: 10.1142/S0219498808002862 | Zbl 1155.16036