On sets related to maximal clones
Yeni Susanti ; Klaus Denecke
Discussiones Mathematicae - General Algebra and Applications, Tome 32 (2012), p. 101-114 / Harvested from The Polish Digital Mathematics Library

For an arbitrary h-ary relation ρ we are interested to express n-clone Polⁿρ in terms of some subsets of the set of all n-ary operations Oⁿ(A) on a finite set A, which are in general not clones but we can obtain Polⁿρ from these sets by using intersection and union. Therefore we specify the concept a function preserves a relation and moreover, we study the properties of this new concept and the connection between these sets and Polⁿρ. Particularly we study Ra̲,bn,k for arbitrary partial order relations, equivalence relations and central relations.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270196
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1190,
     author = {Yeni Susanti and Klaus Denecke},
     title = {On sets related to maximal clones},
     journal = {Discussiones Mathematicae - General Algebra and Applications},
     volume = {32},
     year = {2012},
     pages = {101-114},
     zbl = {1307.08002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1190}
}
Yeni Susanti; Klaus Denecke. On sets related to maximal clones. Discussiones Mathematicae - General Algebra and Applications, Tome 32 (2012) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1190/

[000] [1] A. Fearnley, Clones on Three Elements Preserving a Binary Relation, Algebra Universalis 56 (2007) 165-177. doi: 10.1007/s00012-007-1985-5 | Zbl 1115.08004

[001] [2] Á. Szendrei, Clones in Universal Algebra (Les Presses de L' Université de Montréal, 1986). | Zbl 0603.08004

[002] [3] I.G. Rosenberg, Über die Funktionale Vollständigkeit in den Mehrwertigen Logiken, Rozpravy Ćeskoslovenské Akad. véd, Ser. Math. Nat. Sci. 80(1970) 3-93 | Zbl 0199.30201

[003] [4] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, Hyperequational Classes and Clone Congruences, Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien (1991) 97-118 | Zbl 0759.08005

[004] [5] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publisher, 2000). | Zbl 0960.08001

[005] [6] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman and Hall, 2002).

[006] [7] K. Denecke and Y. Susanti, Semigroups of n-ary Operations on Finite Sets, in: Proceedings of International Conference on Algebra on Algebra 2010 Advances in Algebraic Structures, W. Hemakul, S. Wahyuni and P.W. Sy(Ed(s)), (World Scientific, 2012) 157-176. doi: 10.1142/9789814366311_0011 | Zbl 1264.20070

[007] [8] K. Denecke and Y. Susanti, On Sets Related to Clones of Quasilinear Operations, in: Proceedings of the 6th SEAMS-GMU International Conference on Mathematics and Its Application 2011, S. Wahyuni, I.E. Wijayanti and D. Rosadi (Ed(s)), (University of Gadjah Mada, 2012) 145-158

[008] [9] R. Butkote and K. Denecke, Semigroup Properties of Boolean Operations, Asian-Eur. J. Math. 1(2008) 157-176 | Zbl 1176.20060

[009] [10] R. Butkote, Universal-algebraic and Semigroup-theoretical Properties of Boolean Operations (Dissertation Universität Potsdam, 2009).