Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on and for p < q. We also study the estimate above in the setting of Banach ideals in (X,Y). The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016, author = {Jan Rozendaal and Fedor Sukochev and Anna Tomskova}, title = {Operator Lipschitz functions on Banach spaces}, journal = {Studia Mathematica}, volume = {233}, year = {2016}, pages = {57-92}, zbl = {06575023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016} }
Jan Rozendaal; Fedor Sukochev; Anna Tomskova. Operator Lipschitz functions on Banach spaces. Studia Mathematica, Tome 233 (2016) pp. 57-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016/