Operator Lipschitz functions on Banach spaces
Jan Rozendaal ; Fedor Sukochev ; Anna Tomskova
Studia Mathematica, Tome 233 (2016), p. 57-92 / Harvested from The Polish Digital Mathematics Library

Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form ||f(B)S-Sf(A)||(X,Y)const||BS-SA||(X,Y) for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on X=p and Y=q for p < q. We also study the estimate above in the setting of Banach ideals in (X,Y). The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285670
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016,
     author = {Jan Rozendaal and Fedor Sukochev and Anna Tomskova},
     title = {Operator Lipschitz functions on Banach spaces},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {57-92},
     zbl = {06575023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016}
}
Jan Rozendaal; Fedor Sukochev; Anna Tomskova. Operator Lipschitz functions on Banach spaces. Studia Mathematica, Tome 233 (2016) pp. 57-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8499-3-2016/