Bernstein type properties of two-sided hypersurfaces immersed in a Killing warped product
Antonio W. Cunha ; Eudes L. de Lima ; Henrique F. de Lima ; Eraldo A. Lima Jr. ; Adriano A. Medeiros
Studia Mathematica, Tome 233 (2016), p. 183-196 / Harvested from The Polish Digital Mathematics Library

Our purpose is to apply suitable maximum principles in order to obtain Bernstein type properties for two-sided hypersurfaces immersed with constant mean curvature in a Killing warped product M×ρ, whose curvature of the base Mⁿ satisfies certain constraints and whose warping function ρ is concave on Mⁿ. For this, we study situations in which these hypersurfaces are supposed to be either parabolic, stochastically complete or, in a more general setting, L¹-Liouville. Rigidity results related to entire Killing graphs constructed over the base of the ambient space are also given.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285827
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8464-4-2016,
     author = {Antonio W. Cunha and Eudes L. de Lima and Henrique F. de Lima and Eraldo A. Lima Jr. and Adriano A. Medeiros},
     title = {Bernstein type properties of two-sided hypersurfaces immersed in a Killing warped product},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {183-196},
     zbl = {06586875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8464-4-2016}
}
Antonio W. Cunha; Eudes L. de Lima; Henrique F. de Lima; Eraldo A. Lima Jr.; Adriano A. Medeiros. Bernstein type properties of two-sided hypersurfaces immersed in a Killing warped product. Studia Mathematica, Tome 233 (2016) pp. 183-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8464-4-2016/