We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces and for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8447-4-2016, author = {Michael Langenbruch}, title = {On the diametral dimension of weighted spaces of analytic germs}, journal = {Studia Mathematica}, volume = {233}, year = {2016}, pages = {85-100}, zbl = {06586869}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8447-4-2016} }
Michael Langenbruch. On the diametral dimension of weighted spaces of analytic germs. Studia Mathematica, Tome 233 (2016) pp. 85-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8447-4-2016/