Unconditionality for m-homogeneous polynomials on
Andreas Defant ; Pablo Sevilla-Peris
Studia Mathematica, Tome 233 (2016), p. 45-55 / Harvested from The Polish Digital Mathematics Library

Let χ(m,n) be the unconditional basis constant of the monomial basis zα, α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of supmsupmχ(m,n)m and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a reformulation of our results in terms of tensor products, and as an application a solution for a problem on Bohr radii.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286213
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8386-2-2016,
     author = {Andreas Defant and Pablo Sevilla-Peris},
     title = {Unconditionality for m-homogeneous polynomials on $ln\_{[?]}$
            },
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {45-55},
     zbl = {06575022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8386-2-2016}
}
Andreas Defant; Pablo Sevilla-Peris. Unconditionality for m-homogeneous polynomials on $ℓⁿ_{∞}$
            . Studia Mathematica, Tome 233 (2016) pp. 45-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8386-2-2016/