We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class . The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016,
author = {Pablo L. De N\'apoli and Irene Drelichman and Nicolas Saintier},
title = {Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces},
journal = {Studia Mathematica},
volume = {233},
year = {2016},
pages = {47-65},
zbl = {06586867},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016}
}
Pablo L. De Nápoli; Irene Drelichman; Nicolas Saintier. Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces. Studia Mathematica, Tome 233 (2016) pp. 47-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016/