Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
Pablo L. De Nápoli ; Irene Drelichman ; Nicolas Saintier
Studia Mathematica, Tome 233 (2016), p. 47-65 / Harvested from The Polish Digital Mathematics Library

We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285423
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016,
     author = {Pablo L. De N\'apoli and Irene Drelichman and Nicolas Saintier},
     title = {Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {47-65},
     zbl = {06586867},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016}
}
Pablo L. De Nápoli; Irene Drelichman; Nicolas Saintier. Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces. Studia Mathematica, Tome 233 (2016) pp. 47-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8383-4-2016/