A rigidity phenomenon for the Hardy-Littlewood maximal function
Stefan Steinerberger
Studia Mathematica, Tome 231 (2015), p. 263-278 / Harvested from The Polish Digital Mathematics Library

The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let fCα(,) be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator (Axf)(r)=1/2rx-rx+rf(z)dz has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as those nonconstant functions for which the computation of the maximal function ℳ is as simple as possible. The proof uses the Lindemann-Weierstrass theorem from transcendental number theory.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285673
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8368-12-2015,
     author = {Stefan Steinerberger},
     title = {A rigidity phenomenon for the Hardy-Littlewood maximal function},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {263-278},
     zbl = {1337.42022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8368-12-2015}
}
Stefan Steinerberger. A rigidity phenomenon for the Hardy-Littlewood maximal function. Studia Mathematica, Tome 231 (2015) pp. 263-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8368-12-2015/