Asymptotically conformal classes and non-Strebel points
Guowu Yao
Studia Mathematica, Tome 233 (2016), p. 13-24 / Harvested from The Polish Digital Mathematics Library

Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any t(-1/||μ||,1/||μ||)0,1.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285811
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8329-4-2016,
     author = {Guowu Yao},
     title = {Asymptotically conformal classes and non-Strebel points},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {13-24},
     zbl = {06586865},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8329-4-2016}
}
Guowu Yao. Asymptotically conformal classes and non-Strebel points. Studia Mathematica, Tome 233 (2016) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8329-4-2016/