Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker)
Christian Brouder ; Nguyen Viet Dang ; Frédéric Hélein
Studia Mathematica, Tome 233 (2016), p. 201-226 / Harvested from The Polish Digital Mathematics Library

The pull-back, push-forward and multiplication of smooth functions can be extended to distributions if their wave front sets satisfy some conditions. Thus, it is natural to investigate the topological properties of these operations between spaces Γ' of distributions having a wave front set included in a given closed cone Γ of the cotangent space. As discovered by S. Alesker, the pull-back is not continuous for the usual topology on Γ', and the tensor product is not separately continuous. In this paper, a new topology is defined for which the pull-back and push-forward are continuous, and the tensor and convolution products and multiplication of distributions are hypocontinuous.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285412
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8316-3-2016,
     author = {Christian Brouder and Nguyen Viet Dang and Fr\'ed\'eric H\'elein},
     title = {Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker)},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {201-226},
     zbl = {06586860},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8316-3-2016}
}
Christian Brouder; Nguyen Viet Dang; Frédéric Hélein. Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker). Studia Mathematica, Tome 233 (2016) pp. 201-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8316-3-2016/