Spectral properties of weighted composition operators on the Bloch and Dirichlet spaces
Ted Eklund ; Mikael Lindström ; Paweł Mleczko
Studia Mathematica, Tome 233 (2016), p. 95-112 / Harvested from The Polish Digital Mathematics Library

The spectra of invertible weighted composition operators uCφ on the Bloch and Dirichlet spaces are studied. In the Bloch case we obtain a complete description of the spectrum when φ is a parabolic or elliptic automorphism of the unit disc. In the case of a hyperbolic automorphism φ, exact expressions for the spectral radii of invertible weighted composition operators acting on the Bloch and Dirichlet spaces are derived.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285543
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016,
     author = {Ted Eklund and Mikael Lindstr\"om and Pawe\l\ Mleczko},
     title = {Spectral properties of weighted composition operators on the Bloch and Dirichlet spaces},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {95-112},
     zbl = {06575025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016}
}
Ted Eklund; Mikael Lindström; Paweł Mleczko. Spectral properties of weighted composition operators on the Bloch and Dirichlet spaces. Studia Mathematica, Tome 233 (2016) pp. 95-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016/