The spectra of invertible weighted composition operators on the Bloch and Dirichlet spaces are studied. In the Bloch case we obtain a complete description of the spectrum when φ is a parabolic or elliptic automorphism of the unit disc. In the case of a hyperbolic automorphism φ, exact expressions for the spectral radii of invertible weighted composition operators acting on the Bloch and Dirichlet spaces are derived.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016, author = {Ted Eklund and Mikael Lindstr\"om and Pawe\l\ Mleczko}, title = {Spectral properties of weighted composition operators on the Bloch and Dirichlet spaces}, journal = {Studia Mathematica}, volume = {233}, year = {2016}, pages = {95-112}, zbl = {06575025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016} }
Ted Eklund; Mikael Lindström; Paweł Mleczko. Spectral properties of weighted composition operators on the Bloch and Dirichlet spaces. Studia Mathematica, Tome 233 (2016) pp. 95-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8310-3-2016/