Biduals of tensor products in operator spaces
Verónica Dimant ; Maite Fernández-Unzueta
Studia Mathematica, Tome 231 (2015), p. 165-185 / Harvested from The Polish Digital Mathematics Library

We study whether the operator space V**αW** can be identified with a subspace of the bidual space (VαW)**, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285414
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016,
     author = {Ver\'onica Dimant and Maite Fern\'andez-Unzueta},
     title = {Biduals of tensor products in operator spaces},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {165-185},
     zbl = {06545403},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016}
}
Verónica Dimant; Maite Fernández-Unzueta. Biduals of tensor products in operator spaces. Studia Mathematica, Tome 231 (2015) pp. 165-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8292-1-2016/