This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work (2015). For an inverse semigroup S, it is shown that has a bounded approximate identity if and only if l¹(S) is amenable (a generalization of Leptin’s theorem) and that A(S), the Fourier algebra of S, is operator amenable if and only if l¹(S) is amenable (a generalization of Ruan’s theorem).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016, author = {Hasan Pourmahmood-Aghababa}, title = {Amenability properties of Fig\`a-Talamanca-Herz algebras on inverse semigroups}, journal = {Studia Mathematica}, volume = {233}, year = {2016}, pages = {1-12}, zbl = {06586864}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016} }
Hasan Pourmahmood-Aghababa. Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups. Studia Mathematica, Tome 233 (2016) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016/