Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups
Hasan Pourmahmood-Aghababa
Studia Mathematica, Tome 233 (2016), p. 1-12 / Harvested from The Polish Digital Mathematics Library

This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work (2015). For an inverse semigroup S, it is shown that Ap(S) has a bounded approximate identity if and only if l¹(S) is amenable (a generalization of Leptin’s theorem) and that A(S), the Fourier algebra of S, is operator amenable if and only if l¹(S) is amenable (a generalization of Ruan’s theorem).

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286168
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016,
     author = {Hasan Pourmahmood-Aghababa},
     title = {Amenability properties of Fig\`a-Talamanca-Herz algebras on inverse semigroups},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {1-12},
     zbl = {06586864},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016}
}
Hasan Pourmahmood-Aghababa. Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups. Studia Mathematica, Tome 233 (2016) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8250-4-2016/