We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016, author = {Guangyue Huang and Fanqi Zeng}, title = {De Lellis-Topping type inequalities for f-Laplacians}, journal = {Studia Mathematica}, volume = {233}, year = {2016}, pages = {189-199}, zbl = {06586859}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016} }
Guangyue Huang; Fanqi Zeng. De Lellis-Topping type inequalities for f-Laplacians. Studia Mathematica, Tome 233 (2016) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016/