De Lellis-Topping type inequalities for f-Laplacians
Guangyue Huang ; Fanqi Zeng
Studia Mathematica, Tome 233 (2016), p. 189-199 / Harvested from The Polish Digital Mathematics Library

We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285511
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016,
     author = {Guangyue Huang and Fanqi Zeng},
     title = {De Lellis-Topping type inequalities for f-Laplacians},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {189-199},
     zbl = {06586859},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016}
}
Guangyue Huang; Fanqi Zeng. De Lellis-Topping type inequalities for f-Laplacians. Studia Mathematica, Tome 233 (2016) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016/