We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016,
author = {Guangyue Huang and Fanqi Zeng},
title = {De Lellis-Topping type inequalities for f-Laplacians},
journal = {Studia Mathematica},
volume = {233},
year = {2016},
pages = {189-199},
zbl = {06586859},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016}
}
Guangyue Huang; Fanqi Zeng. De Lellis-Topping type inequalities for f-Laplacians. Studia Mathematica, Tome 233 (2016) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8236-4-2016/