As a follow-up to a paper of Aupetit and Mouton (1996), we consider the spectral definitions of rank, trace and determinant applied to elements in a general Banach algebra. We prove a generalization of Sylvester's Determinant Theorem to Banach algebras and thereafter a generalization of the Frobenius inequality.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8157-12-2015, author = {Gareth Braatvedt and Rudolf Brits and Francois Schulz}, title = {Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {173-180}, zbl = {06526966}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8157-12-2015} }
Gareth Braatvedt; Rudolf Brits; Francois Schulz. Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems. Studia Mathematica, Tome 231 (2015) pp. 173-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8157-12-2015/