On uniqueness of distribution of a random variable whose independent copies span a subspace in Lp
S. Astashkin ; F. Sukochev ; D. Zanin
Studia Mathematica, Tome 231 (2015), p. 41-57 / Harvested from The Polish Digital Mathematics Library

Let 1 ≤ p < 2 and let Lp=Lp[0,1] be the classical Lp-space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable fLp spans in Lp a subspace isomorphic to some Orlicz sequence space lM. We give precise connections between M and f and establish conditions under which the distribution of a random variable fLp whose independent copies span lM in Lp is essentially unique.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285894
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8089-1-2016,
     author = {S. Astashkin and F. Sukochev and D. Zanin},
     title = {On uniqueness of distribution of a random variable whose independent copies span a subspace in $L\_{p}$
            },
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {41-57},
     zbl = {06545399},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8089-1-2016}
}
S. Astashkin; F. Sukochev; D. Zanin. On uniqueness of distribution of a random variable whose independent copies span a subspace in $L_{p}$
            . Studia Mathematica, Tome 231 (2015) pp. 41-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8089-1-2016/