Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and be the Figiel operator with and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when is weakly nearly strictly convex.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm8036-12-2015, author = {Yu Zhou and Zihou Zhang and Chunyan Liu}, title = {Linearization of isometric embedding on Banach spaces}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {31-39}, zbl = {06545398}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8036-12-2015} }
Yu Zhou; Zihou Zhang; Chunyan Liu. Linearization of isometric embedding on Banach spaces. Studia Mathematica, Tome 231 (2015) pp. 31-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm8036-12-2015/