Noncommutative fractional integrals
Narcisse Randrianantoanina ; Lian Wu
Studia Mathematica, Tome 231 (2015), p. 113-139 / Harvested from The Polish Digital Mathematics Library

Let ℳ be a hyperfinite finite von Nemann algebra and (k)k1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration (k)k1. For a finite noncommutative martingale x=(xk)1knL() adapted to (k)k1 and 0 < α < 1, the fractional integral of x of order α is defined by setting Iαx=k=1nζkαdxk for an appropriate sequence (ζk)k1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor equipped with its natural increasing filtration, ζk=2-k for k ≥ 1. We prove that Iα is of weak type (1,1/(1-α)). More precisely, there is a constant c depending only on α such that if x=(xk)k1 is a finite noncommutative martingale in L₁(ℳ) then ||Iαx||L1/(1-α),()c||x||L(). We also show that Iα is bounded from Lp() into Lq() where 1 < p < q < ∞ and α = 1/p - 1/q, thus providing a noncommutative analogue of a classical result. Furthermore, we investigate the corresponding result for noncommutative martingale Hardy spaces. Namely, there is a constant c depending only on α such that if x=(xk)k1 is a finite noncommutative martingale in the martingale Hardy space ₁(ℳ) then ||Iαx||1/(1-α)()c||x||().

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:285868
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm7989-1-2016,
     author = {Narcisse Randrianantoanina and Lian Wu},
     title = {Noncommutative fractional integrals},
     journal = {Studia Mathematica},
     volume = {231},
     year = {2015},
     pages = {113-139},
     zbl = {06526964},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm7989-1-2016}
}
Narcisse Randrianantoanina; Lian Wu. Noncommutative fractional integrals. Studia Mathematica, Tome 231 (2015) pp. 113-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm7989-1-2016/