On embeddings of C₀(K) spaces into C₀(L,X) spaces
Leandro Candido
Studia Mathematica, Tome 233 (2016), p. 1-6 / Harvested from The Polish Digital Mathematics Library

For a locally compact Hausdorff space K and a Banach space X let C₀(K, X) denote the space of all continuous functions f:K → X which vanish at infinity, equipped with the supremum norm. If X is the scalar field, we denote C₀(K, X) simply by C₀(K). We prove that for locally compact Hausdorff spaces K and L and for a Banach space X containing no copy of c₀, if there is an isomorphic embedding of C₀(K) into C₀(L,X), then either K is finite or |K| ≤ |L|. As a consequence, if there is an isomorphic embedding of C₀(K) into C₀(L,X) where X contains no copy of c₀ and L is scattered, then K must be scattered.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285855
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm7857-3-2016,
     author = {Leandro Candido},
     title = {On embeddings of C0(K) spaces into C0(L,X) spaces},
     journal = {Studia Mathematica},
     volume = {233},
     year = {2016},
     pages = {1-6},
     zbl = {06575019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm7857-3-2016}
}
Leandro Candido. On embeddings of C₀(K) spaces into C₀(L,X) spaces. Studia Mathematica, Tome 233 (2016) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm7857-3-2016/