Following Jansen and Waldmann, and Kajiwara and Watatani, we introduce notions of coactions of a finite-dimensional C*-Hopf algebra on a Hilbert C*-bimodule of finite type in the sense of Kajiwara and Watatani and define their crossed product. We investigate their basic properties and show that the strong Morita equivalence for coactions preserves the Rokhlin property for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-4, author = {Kazunori Kodaka and Tamotsu Teruya}, title = {The strong Morita equivalence for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {259-294}, zbl = {06526958}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-4} }
Kazunori Kodaka; Tamotsu Teruya. The strong Morita equivalence for coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras. Studia Mathematica, Tome 231 (2015) pp. 259-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-4/