Let S¹ be the stopping time space and ℬ₁(S¹) be the Baire-1 elements of the second dual of S¹. To each element x** in ℬ₁(S¹) we associate a positive Borel measure on the Cantor set. We use the measures to characterize the operators T: X → S¹, defined on a space X with an unconditional basis, which preserve a copy of S¹. In particular, if X = S¹, we show that T preserves a copy of S¹ if and only if is non-separable as a subset of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-3, author = {Dimitris Apatsidis}, title = {Operators on the stopping time space}, journal = {Studia Mathematica}, volume = {231}, year = {2015}, pages = {235-258}, zbl = {06526957}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-3} }
Dimitris Apatsidis. Operators on the stopping time space. Studia Mathematica, Tome 231 (2015) pp. 235-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-3-3/