We consider generalized square function norms of holomorphic functions with values in a Banach space. One of the main results is a characterization of embeddings of the form , in terms of the type p and cotype q of the Banach space X. As an application we prove -estimates for vector-valued Littlewood-Paley-Stein g-functions and derive an embedding result for real and complex interpolation spaces under type and cotype conditions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-7,
author = {Mark Veraar and Lutz Weis},
title = {Estimates for vector-valued holomorphic functions and Littlewood-Paley-Stein theory},
journal = {Studia Mathematica},
volume = {231},
year = {2015},
pages = {73-99},
zbl = {06497981},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-7}
}
Mark Veraar; Lutz Weis. Estimates for vector-valued holomorphic functions and Littlewood-Paley-Stein theory. Studia Mathematica, Tome 231 (2015) pp. 73-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm228-1-7/